III Semester (2 year)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22PC3EC01</td>
<td>Analog Electronics*</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>22BS3MT05</td>
<td>Numerical Methods & Complex variables</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>22PC3CS16</td>
<td>Data Structures using C*</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>22PC3EC02</td>
<td>Probability Theory and Stochastic Processes</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>22PC3EC03</td>
<td>Signals and Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>22PC3EC04</td>
<td>Modelling and Simulation Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>22PR3EC01</td>
<td>Evaluation of Internship-I</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>22AC3HS01</td>
<td>Universal Human Values</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>14</td>
<td>2</td>
<td>8</td>
<td>20</td>
</tr>
</tbody>
</table>

IV Semester (2 year)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course code</th>
<th>Course title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22PC4EC05</td>
<td>Analog and Digital Communications*</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>22PC4EC06</td>
<td>Digital Logic Design*</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>22PC4EC07</td>
<td>Electromagnetic Fields and Transmission Lines</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>22PC4EC08</td>
<td>Control Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>22BS4EG03</td>
<td>English for Employability*</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>22HS4HS01</td>
<td>Business Economics and Financial Analysis</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>22PR4EC02</td>
<td>Student Skill Development Course/Doing Engineering-I</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>15</td>
<td>1</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>22MC4HS06</td>
<td>Constitution of India</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
B.Tech II Year – I Sem
Subject Code: 22PC3EC01

ANALOG ELECTRONICS
(Integrated Course)

Course Objectives: This course will enable students to
1. To understand operation of semiconductor devices.
2. To give understanding of various types of amplifier circuits such as small signal, cascaded, large signal and tuned amplifiers.
3. To familiarize the Concept of feedback in amplifiers so as to differentiate between negative and positive feedback and generate the oscillations for different frequencies.
4. To construct various Multivibrators using transistors and sweep circuits.

Course Outcomes:
Upon completion of the Course, the students will be able to:
1. Analyze the Diode applications, Bipolar Junction Transistor characteristics and the biasing techniques.
2. Design the multistage amplifiers using concepts of High Frequency Analysis of Transistors.
3. Apply the Concepts of negative feedback to improve the stability of amplifiers and positive feedback to generate sustained oscillations
4. Design Multivibrators and sweep circuits for various applications.

Module 1
Special Semiconductor Devices
Operation and characteristics of Tunnel Diode, Energy band Diagram, Tunnel diode applications, Operation and characteristics of Photo diode, varactor diode, LASER and LED, Shockley Diode, Operation and characteristics of SCR, UJT, Photo transistor, Thermistor, LDR.

Week 1: Introduction to LT SPICE (or) TINA (or) Multisim software
Week 2: Analyze the Characteristics of UJT(*).
Week 3: Analyze the characteristics of LDR and Photo-diode

Module 2
Transistor Biasing and Thermal Stabilization: Need for biasing, operating point, load line analysis, BJT biasing- fixed bias, collector to base bias, self bias, Stability factors, (S, S', S'’), Bias compensation, Thermal runaway, Thermal stability.
Small Signal Low Frequency Transistor Amplifier Models: BJT: Two port network, Transistor hybrid model, determination of h-parameters, conversion of h-parameters, generalized
analysis of transistor amplifier model using h-parameters, Analysis of CB, CE and CC amplifiers using exact and approximate analysis, Comparison of transistor amplifiers.

Week 4: Design a self-bias circuit of BJT.
Week 5: Determine the frequency response of Common Emitter Amplifier (*).
Week 6: Darlington pair circuit.

Module 3
Multistage Amplifiers: Classification of Amplifiers, Distortion in amplifiers, Different coupling schemes used in amplifiers, Frequency response and Analysis of multistage amplifiers, Cascade RC Coupled amplifiers, Cascode amplifier, Darlington pair.
Transistor at High Frequency: Hybrid Π-model of Common Emitter transistor model, f_α, f_β and unity gain bandwidth, Gain-bandwidth product.

Week 7: Two Stage RC Coupled Amplifier(*).
Week 8: Cascode amplifier Circuit (*)

Module 4
Oscillators: Condition for Oscillations, RC type Oscillators-RC phase shift and Wien-bridge Oscillators, LC type Oscillators –Generalized analysis of LC Oscillators, Hartley and Colpitts Oscillators, Frequency and amplitude stability of Oscillators, Crystal Oscillator.

Week 9: Voltage Series Feedback amplifier Circuit.
Week 10: RC Phase shift Oscillator Circuit (*)
Week 11: Wien bridge Oscillator Circuit(*).
Week 12: Hartley and Colpitt’s Oscillators Circuit(*).

Module 5
Multivibrators: Analysis and Design of Bistable, Monostable, Astable Multivibrators and Schmitt trigger using Transistors.
Time Base Generators: General features of a Time base Signal, Methods of Generating Time Base Waveform, concepts of Transistor Miller and Bootstrap Time Base Generator, Methods of Linearity improvement.

Week 13: Design a Monostable Multivibrator(*)
Week 14: Design a Astable Multivibrator(*)
Week 15: The output voltage waveform of Miller Sweep Circuit.

Note:
- Experiments marked with (*) has to be designed, simulated and verified in hardware.
- Minimum of 8 experiments to be done in hardware.

Books:

1. Electronic Devices and Circuits- Jacob Millman, McGraw Hill Education.

Reference Books

CO-PO/PSO Mapping:

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
NUMERICAL METHODS AND COMPLEX VARIABLES
(Common to EEE/ECE)

Pre-requisites: Mathematical Knowledge at pre-university level

Course Objectives: To provide the student with

1. Various methods to find roots of an equation.
2. Concept of finite differences and to estimate the value for the given data using interpolation.
3. Evaluation of integrals using numerical techniques.
5. Differentiation and integration of complex valued functions.
7. Expansion of complex functions using Taylor’s and Laurent’s series.
8. Expressing periodic function by Fourier series and a non-periodic function by Fourier transforms.

Course Outcomes: After learning the contents of this paper the student must be able to

CO1: Obtain the real roots of algebraic, transcendental equations also approximate solutions for evenly and unevenly spaced data.
CO2: Fit a given data to linear/non-linear curve and appreciate the concept of numerical differentiation and integration. Develop the skill of finding approximate solutions to problem arising in first order IVP in differential equations.
CO3: Analyse the complex function with reference to their analyticity, integration of complex functions by Cauchy’s integral and residue theorems also Taylor’s and Laurent’s series expansions in complex function.
CO4: Express any periodic function in terms of sine and cosine.

MODULE I

MODULE II

Numerical Differentiation and Integration: Forward, backward and central differences

Solutions Of Ordinary Differential Equations: Taylor’s series; Picard’s method, Euler’s and modified Euler’s methods; Runge-Kutta method of fourth order.

MODULE III

Complex Functions: Limit, Continuity and Differentiation of Complex functions.

Analytic Functions: Analyticity, Necessary and Sufficient condition for a function to be analytic (CR-Equations without proof), Harmonic function and finding harmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties. Conformal mapping and Mobius transformation.

MODULE IV

Complex Integrals: Line integral, Cauchy’s theorem (without proof), Cauchy’s Integral formula (without proof), Zeros of analytic functions, Singularities.

Poles and Residues: Taylor’s series, Laurent’s series; Poles and Residues, Cauchy Residue theorem (without proof), Evaluation of Real definite integrals of the type \(\int_0^{2\pi} f(\sin\theta, \cos\theta) d\theta \), \(\int_{-\infty}^{\infty} f(x) dx \) (poles NOT on real axis).

MODULE V

Fourier Series: Introduction, Fourier series of periodic functions, Fourier series of even and odd functions, Change of interval, Half range sine and cosine series.

Fourier Transform: Fourier sine and cosine transforms - Inverse Fourier transforms.

Text Books:

Reference Books:

MOOC Courses:
1. Complex variables: https://nptel.ac.in/courses/111/106/111106141/
2. Numerical Methods: https://nptel.ac.in/courses/127/106/127106019/
E- Books:
1. Higher Engineering Mathematics by B.S. Grewal
 https://1lib.in/book/2352263/9368cb
2. Introductory methods of numerical analysis by S.S. Sastry
 https://1lib.in/book/3380466/2e7cbd
 https://1lib.in/book/2574161/794c8d
4. Advanced Engineering Mathematics by Erwin Kreyszig
 https://1lib.in/book/1213502/92e465
5. Advanced Modern Engineering Mathematics by Glyn James
 https://1lib.in/book/1204739/431eb2
6. Complex Analysis by Lars V Ahlfors
 https://1lib.in/book/842200/9692f4

CO-PO MAPPING:

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>
DATA STRUCTURES USING C
(Common to CSE, AIML, EEE, ECE)

Prerequisite: Basic mathematical, analytical and logical capability, problem solving through C.

Course Objectives:

- Introduce Analysis of Algorithm in terms of space and time complexity.
- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithms.

Course Outcomes:

- Understand concepts of ADT and to write an algorithm for a given problem statement, also calculate time and space complexity.
- Ability to develop C programs for computing real-life applications using data structures like linked lists, stacks, queues.
- Understand different types of trees like Red-Black, AVL, Splay trees.
- Ability to implement searching and sorting algorithms, and pattern matching algorithms.

Module I

Introduction: Basics of Data Structures, Abstract data types, Dynamic aspects of operations on data, Characteristics of data structures, Creation and manipulation of data structures, Operations on data structures.

Algorithms: Mathematical notations and functions, Asymptotic, Analysis of algorithms Time and Space complexity.

Programs:

1. Asymptotic notations to calculate the running time complexity of any algorithm. O Notation (Big-O Notation), Ω Notation (Big-Omega Notation), θ Notation (Theta Notation)
2. Calculate complexity analysis of control structures
3. Calculate complexity analysis of any recursive algorithm
4. Calculating Time complexity of Linear Search algorithm
5. Calculate Time Complexity of quick sort in all possible cases.
Module II

Linked lists: Types of linked lists – singly, doubly and circularly linked lists, operations on linked lists.

Stacks: Implementation of stacks – array and linked list, operations on stacks, Applications of Stacks, Notations – infix, prefix and postfix, Conversion and evaluation of arithmetic expressions using Stacks.

Queues: Implementation of queues – array and linked list, operations on queues, Types of queues – queue, double ended queue and priority queue.

Programs:

1. Write a Program to Implement Stack Operations using Dynamic Memory Allocation.
2. Write a program to convert expressions infix to postfix using stack.
3. Write a program to evaluate arithmetic expressions using stack
4. Write a program that uses functions to perform the following operations on Singly linked list.
 i) Creation ii) Insertion iii) Deletion iv) Traversal
5. Write a program that uses functions to perform the following operations on Circular linked list.
 i) Creation ii) Insertion iii) Deletion iv) Traversal
6. Write a program that implement Queue (its operations) using Arrays.
7. Write a program that implement stack (its operations) using Pointers

Module III

Dictionaries: Linear list representation, skip list representation, operations - insertion, deletion and searching.

Hash Table Representation: hash functions, collision resolution-separate chaining, open addressing- linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

Programs:

1. Write a program to implement dictionary linear list representation and its operations
2. Write a Program to Implement Hash Tables with Quadratic Probing
3. Write a Program to Implement Hash Tables with Linear Probing
4. Write a Program to Implement Hash Tables Chaining with Binary Trees
5. Write a Program to Implement Hash Tables Chaining with Doubly Linked Lists
Module- IV

Graph: Basic terminologies and Representation Traversal algorithms Breadth First Search, Depth First Search, Shortest path: Depth first search in directed and undirected graphs. Union-find data structure and applications. Directed acyclic graphs, topological sort.

Programs:
1. Write a program to implement the Binary Search tree.
 a) Insertion b) Deletion c) Traversal d) Searching element in tree.
2. Write a program to implement the AVL tree.
 a) Insertion b) Deletion c) Traversal d) Searching element in tree.
3. Write a program to implement the Red-Black tree.
 a) Insertion b) Deletion
4. Write a program to implement the Splay tree.
 a) Insertion b) Deletion
5. Write a program to implement graph traversal methods
 a) Breadth First Search, b) Depth First Search

Module V

Sorting: objective and Properties of different sorting Algorithms Insertion Sort, Bubble sort, Selection Sort, Merge sort, Quick Sort, Heap sort, Radix sort, Bucket sort. Performance and comparison among all the methods Algorithm design techniques: Divide and conquer, Greedy approach, dynamic programming.

Programs:
1. Write a program to implement merge sort using divide and conquer technique
2. Write a program to implement bubble sort using greedy approach.
3. Write a program to implement brute-force method of string matching.
4. Write a Program to perform string matching using Naive String Matching
5. Write a program to implement Standard Trie
6. Write a program to implement Compressed Trie
7. Write a program to implement Suffix Trie

TEXT BOOKS:

REFERENCE BOOKS:

WEB RESOURCES:

https://www.javatpoint.com /c-programming-language-tutorial

https://www.tutorialspoint.com/cprogramming/index.htm

Course Outcomes:

<table>
<thead>
<tr>
<th>O-PO/PSO Mapping Chart</th>
<th>(3/2/1 indicates strength of correlation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 – High; 2 – Medium; 1 – Low</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
B.Tech II Year–I Sem

Subject Code: 22PC3EC02

L T P C
3 0 0 3

Probability Theory and Stochastic Processes

Prerequisite: Mathematics

Course Objectives: This course will enable students to
1. This gives basic understanding of random variables and operations that can be performed on them.
2. To known the Spectral and temporal characteristics of Random Process.
3. To Learn the Basic concepts of Information theory Noise sources and its representation for understanding its characteristics.

Course Outcomes:
Upon completion of the Course, the students will be able to:
1. Perform operations on single and multiple Random variables.
2. Determine the Spectral and temporal characteristics of Random Signals.
3. Characterize LTI systems driven by stationary random process by using ACFs and PSDs.
4. Describe the concepts of Noise and Information theory in Communication systems

Module I

Module II
Module III

Module IV

Module V
Noise Sources & Information Theory: Resistive/Thermal Noise Source, Arbitrary Noise Sources, Effective Noise Temperature, Noise equivalent bandwidth, Average Noise Figures, Average Noise Figure of cascaded networks, Narrow Band noise, Quadrature representation of narrow band noise & its properties. Entropy, Information rate, Source coding: Huffman coding, Shannon Fano coding, Mutual information, Channel capacity of discrete channel, Shannon-Hartley law; Trade-off between bandwidth and SNR.

Text Books:

Reference Books:
1. Random Processes for Engineers, Bruce Hajek - Cambridge unipress, 2015
CO-PO Mapping

CO-PO/PSO Mapping Chart

(3/2/1 indicates strength of correlation)
3 – High; 2 – Medium; 1 - Low

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Course Objectives: This course will enable students to
1. To understand various fundamental characteristics of signals and systems.
2. To study the importance of transform domain.
3. To understand the characteristics of LTI systems.
4. To analyze and design various systems.
5. To study the effects of sampling.

Course Outcomes: Upon completion of the Course, the students will be able to
1. Analyze the various signals, systems and their operations.
2. Demonstrate arbitrary signals in time and frequency domain.
3. Analyze the characteristics of linear time invariant systems.
4. Apply the different transform techniques to the signals.

Module I
Representation of Signals: Introduction to signals, Elementary signals, basic operations on signals, classification of Signals, Operations on Signals. System and classification of systems.

Signal Analysis: Analogy between vectors and signals, orthogonal signal space, Signal approximation using orthogonal functions, Closed or complete set of orthogonal functions.

Module II
Fourier series: Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, Dirichlet’s conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier spectrum.

Module III
Sampling Theorem: Graphical and analytical proof for Band Limited Signals, Reconstruction of signal from its samples, Effect of under sampling – Aliasing. Introduction to Band Pass Sampling.

Module IV

Module V

Convolution: Concept of convolution in time domain and frequency domain, Graphical representation of convolution, Properties of Convolution.

Text Books:

Reference Books:

Web Resources:

E Books:
Mooc Courses:

CO-PO/PSO Mapping

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

CO-PO/PSO Mapping Chart (3/2/1 indicates strength of correlation)
3 – High; 2 – Medium; 1 – Low
Course Objectives: This course will enable students to
1. To develop ability to analyze linear systems and signals.
2. To develop critical understanding of mathematical methods to analyze linear systems and signals.
3. To know the various transform techniques
4. To analyze sampling principles

Course Outcomes: Upon completing this course, the students will be able to
1. Generate, analyze and perform various operations on Signals/Sequences both in time and frequency domain
2. Analyze and Characterize Continuous and Discrete Time Systems both in Time and Frequency domain along with the concept of Sampling
3. Generate different Random Signals and capable to analyze their Characteristics
4. Apply the Concepts of Deterministic and Random Signals for Noise removal Applications and other Real Time Signals

List of Experiments:
1. Basic Operations on Matrices.
2. Generation of Various Signals and Sequences (Periodic and Aperiodic), such as Unit Impulse, Unit Step, Square, Saw tooth, Triangular, Sinusoidal, Ramp, Sinc.
3. Operations on Signals and Sequences such as Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy and Average Power.
4. Finding the Even and Odd parts of Signal/Sequence and Real and Imaginary parts of Signal.
5. Convolution for Signals and sequences.
6. Auto Correlation and Cross Correlation for Signals and Sequences.
8. Computation of Unit sample, Unit step and Sinusoidal responses of the given LTI system and verifying its physical realizability and stability properties.
10. Finding the Fourier Transform of a given signal and plotting its magnitude and phase spectrum.
12. Locating the Zeros and Poles and plotting the Pole-Zero maps in S-plane and Z-Plane for the given transfer function.
14. Verification of Sampling Theorem.
17. Verification of Weiner-Khinchine Relations.
19. Design An App

Text Books:

Reference Books:

Web Resources:

CO-PO mapping

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Universal Human Values (UHV)
(Common to ECE, EEE, ME, CSE, CSD, CSO, CSC, CSM branches)

Course Objectives:

1. To help students distinguish between values and skills, and understand the need, basic guidelines, content and process of value education.
2. To help students initiate a process of dialog within themselves to know what they ‘really want to be’ in their life and profession.
3. To help students understand the meaning of happiness and prosperity for a human being.
4. To facilitate the students to understand harmony at all the levels of human living, and live accordingly.
5. To facilitate the students in applying the understanding of harmony in existence in their profession and lead an ethical life.

Course Outcome: On completion of this course, the students will be able to
CO1: Explore on the basic aspiration of Human being and its fulfilment
CO2: Distinguish the difference between the Self and the Body
CO3: Explore the value of harmony in family, society and nature
CO4: Understanding of gender related issues and gender relationship.

Module I
Self- Exploration on UHV Basic Guidelines: Content and Process for Value Education
Understanding the need, basic guidelines, Self- Exploration–what is it? - its content and process; ‘Natural Acceptance’ and Experiential Validation- as the mechanism for self-exploration.

Continuous Happiness and Prosperity: A look at basic Human Aspirations, Right understanding, Relationship and Physical Facilities- the basic requirements for fulfilment of aspirations of every human being with their correct priority, Understanding Happiness and Prosperity.

Module II
Understanding Harmony in the Human Being: Harmony in Myself Understanding human being as a co-existence of the sentient ‘I’ and the material ‘Body’, Understanding the needs of Self (‘I’) and ‘Body’ - Sukh and Suvidha, Understanding the Body as an instrument of ‘I’

Understanding Harmony in self: Understanding the characteristics and activities of ‘I’ and harmony in ‘I’, Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail
Module III

Understanding Harmony in the Family: Harmony and Values in Relationships in the Family- the basic unit of human interaction, Trust (Vishwas) and Respect (Samman) as the foundational values of relationship, Understanding the meaning of Vishwas & Samman; Difference between intention and competence,

Module IV

Understanding Harmony in the Existence: Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all- pervasive space, Holistic perception of harmony at all levels of existence.

Module V

Gender relationship and Culture:Gender roles and relationship matrix, sex selection and consequences, declining sex ratio, Gender Issues- Gender sensitive language, Just Relationships: Being together as equals.

Text Books:
2. Towards a World of Equals: a bilingual Textbook on Gender. A Suneetha, andothers… Telugu Academy, Telangana Gov. 2015

References:

MOOC Course: NPTEL -Exploring Human Values: Visions of Happiness and Perfect
CO-PO MAPPING:

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

CO-PO Mapping Chart

(3/2/1 indicates strength of correlation) 3 – High; 2 – Medium; 1 – Low
B. Tech II Year-II Sem

Subject Code: 22PC4EC05

L T P C

3 0 2 4

ANALOG AND DIGITAL COMMUNICATIONS
(Integrate Course)

Prerequisite: Probability theory and Stochastic Processes, Signal and system

Course Objectives: This course will enable students to

1. To develop ability to analyze system requirements of Analog and digital communication systems.
2. To understand the generation, detection of various Analog and digital modulation techniques.
3. To acquire the vortical knowledge of each block in AM, FM transmitters and receivers.
4. To understand the concepts of baseband transmissions.

Course Outcomes: Upon completing this course, the student able to

1. Analyze various Analog and Digital Modulation and Demodulation techniques.
2. Model the noise present in continuous wave Modulation techniques.
3. Implement the Super heterodyne Receiver concept and Pulse Modulation Techniques in various applications
4. Design the base band Transmission

MODULE - I

Week 1: Amplitude Modulation and Demodulation using trainer kit
Week 2: DSB-SC, SSB-SC Modulator & Detector using trainer kit
Week 3: Generate modulated and demodulated signals of AM, DSB-SC, SSB- SC using OCTAVE or any equivalent software.

MODULE- II

Generation of FM Signal- Armstrong Method, Detection of FM Signal: Balanced slope detector, Phase locked loop, Comparison of FM and AM., Concept of Pre-emphasis and de-emphasis.

Week 4: Frequency Modulation and Demodulation using trainer kit
Week 5: Generate modulated and demodulated signals of FM and PM using OCTAVE or any equivalent software
MODULE - III

Transmitters: Classification of Transmitters, AM Transmitters, FM Transmitters

Week 6: Course project/PBL
Week 7: Verification of Sampling Theorem using OCTAVE or any equivalent software.

MODULE - IV

Pulse Modulation: Types of Pulse modulation- PAM, PWM and PPM. Comparison of FDM and TDM.

Pulse Code Modulation: PCM Generation and Reconstruction, Quantization Noise, Non-Uniform Quantization and Companding, DPCM, Adaptive DPCM, DM and Adaptive DM, Noise in PCM and DM.

Week 8: Generation and detection of TDM and FDM signal using trainer kit.
Week 9: Generation and detection of PAM, PWM signal using trainer kit.
Week 10: Generation and detection of PPM and PCM signal using trainer kit.
Week 11: Generation and detection of PAM, PWM, PPM and PCM using OCTAVE or any equivalent software.

MODULE - V

Digital Modulation Techniques: ASK- Modulator, Coherent ASK Detector, FSK-Modulator, Non- Coherent FSK Detector, BPSK- Modulator, Coherent BPSK Detection. Principles of QPSK, Differential PSK and QAM.

Week 12: Generation and detection of PSK signal using trainer kit
Week 13: Generation and detection of BPSK signal using trainer kit
Week 14: Generation and detection of DPSK signal using trainer kit

Qualitative: Baseband Transmission and Optimal Reception of Digital Signal

TEXTBOOKS

REFERENCE BOOKS
2. Electronic Communications, Dennis Roddy and John Coolean - 4th Ed., PEA, 2004
4. Analog and Digital Communication, K. Sam Shanmugam - Willey, 2005

E- Books:
1. https://www.academia.edu/42933156/Basic_Electrical_Engineering_VK_Mehta

CO-PO Mapping

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Course Objectives: This course will enable students to
1. To understand common forms of number representation in logic circuits.
2. To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
3. To understand the concepts of combinational logic circuits and sequential circuits.
4. To understand the Realization of Logic Gates Using Diodes & Transistors.

Course Outcomes: Upon completing this course, the students will be able to
1. Describe the numerical information in different forms and Boolean Algebra theorems
2. Solve Boolean expressions using Boolean Theorems-maps
3. Design combinational and sequential circuits
4. Implement logic families and realization of logic gates

Module - I
Number Systems: Number systems, Complements of Numbers, Codes- Weighted and Non-weighted codes and its Properties, Parity check code and Hamming code.

Week 1: Realization of Boolean Expressions using Gates
Week 2: Design and realization logic gates using universal gates
Week 3: Generation of clock using NAND / NOR gates

Module - II
Minimization of Boolean functions: Karnaugh Map Method - Up to five Variables, Don’t Care Map Entries, Tabular Method
Realization of Logic Gates Using Diodes & Transistors: AND, OR and NOT Gates using RTL, DTL, TTL and CMOS Logic Families and its Comparison, NAND & NOR Gate using TTL & CMOS.

Week 4: Realization of logic gates using DTL, TTL, ECL, etc.,

Module – III
Combinational Logic Circuits: Adders, Subtractors, Comparators, Multiplexers, Demultiplexers, Encoders, Decoders and Code converters, Parity-bit Generator.
Sequential Circuits Fundamentals: Basic Architectural Distinctions between Combinational and Sequential circuits, SR Latch, Flip Flops: SR, JK, JK Master Slave, D and T Type Flip Flops, Excitation Table of all Flip Flops, Timing and Triggering Consideration, Conversion from one type of Flip-Flop to another.
Week 5: Design a 4 – bit Adder /Subtractor
Week 6: Design and realization of a 4 – bit gray to Binary and Binary to Gray Converter
Week 7: Design and realization of 8x1 MUX using 2x1MUX
Week 8: Design and realization of 4-bit comparator

Module - IV
Registers and Counters: Shift Registers – Left, Right and Bidirectional Shift Registers, Applications of Shift Registers - Operation of Ring and Twisted Ring Counter, Operation of Asynchronous and Synchronous Counters.

Synchronous Sequential Logic: Analysis of Clocked Sequential Circuits- Serial Binary Adder, Sequence Detector, Design Synchronous & Asynchronous Modulo N –Counters.

Week 9: Design and realization of an 8-bit parallel load and serial out shift register using flip-flops.
Week 10: Design and realization of a Synchronous and Asynchronous counter using flip-flops
Week 11: Design and realization of Asynchronous counters using flip-flops

Module – V
Finite state machine: capabilities and limitations, Mealy and Moore models, State equivalence and machine minimization, simplification of incompletely specified machines, Merger graphs.

Week 12: Design and Realization of a sequence detector-a finite state machine
Week 13: PBL/ Course project

Text Books

Reference Books

Web Resources
1. http://blog.digitalelectronics.co.in/
2. www.nesoacademy.org/electronics-engineering/digital-electronics/digital
3. https://nptel.ac.in/courses/117105080/

E-Books

Mooc Courses
2. https://nptel.ac.in/noc/courses/noc21/SEM2/noc21-ee75/

CO-PO mapping:

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>
B.Tech II Year – II Sem
Subject Code: 22PC4EC07

ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES

Pre-requisite: Mathematics

Course Objectives: This course will enable students to

1. To learn the Basic Laws, Concepts and proofs related to Electrostatic Fields and Magnetostatic Fields, and apply them to solve physics and engineering problems.
2. To distinguish between static and time-varying fields, and understand the significance and utility of Maxwell's Equations and Boundary Conditions, and gain ability to provide solutions to communication engineering problems.
3. To study the propagation, reflection and transmission of planewaves in bounded and unbounded media.

Course Outcomes: Upon completing this course, the student able to

1. Acquire the knowledge of Basic Laws, Concepts and proofs related to Electrostatic Fields and Magnetostatic Fields.
2. Characterize the static and time-varying fields, establish the corresponding sets of Maxwell's Equations and Boundary Conditions.
3. Analyze the Wave Equations and classify conductors, dielectrics and evaluate the UPW Characteristics for several practical media of interest.
4. Analyze the Design aspect of transmission line parameters and configurations.

Module— I

Module—II

Module— III
Module — IV

Module — V

TEXT BOOKS:

REFERENCE BOOKS:
1. Electromagnetics with Applications, JD. Kraus - 5th Ed., TMH

CO-PO/PSO Mapping:

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12</td>
<td>PSO 1 PSO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>3 3 2 1 - - - - 1 - - -</td>
<td>- -</td>
</tr>
<tr>
<td>CO2</td>
<td>3 3 2 1 - - - - 1 - - -</td>
<td>- -</td>
</tr>
<tr>
<td>CO3</td>
<td>3 3 2 1 - - - - 1 - - -</td>
<td>- -</td>
</tr>
<tr>
<td>CO4</td>
<td>3 3 2 1 - - - - 1 - - -</td>
<td>- -</td>
</tr>
</tbody>
</table>
Pre-requisite: Electrical circuit Analysis, M-II.

Course Objectives: This course will enable students to
1. To model the electrical & Mechanical LTI Systems
2. To obtain the transfer function model
3. To Study the time domain response of LTI system.
4. To study the frequency response of LTI System.
5. To model system using state space analysis

Course Outcomes: Upon completion of the Course, the students will be able to
1. Apply various control strategies to different applications (power systems, electrical drives, mechanical systems)
2. Apply various time domain and frequency domain techniques to assess the system performance.
3. Design a suitable controller and/or a compensator for the specific application to improve the system performance.
4. Perform controllability and observability using state space representation and applications of state space representation to various systems.

Module I

Block diagram algebra & Servo motors: Block diagram representation of systems considering electrical systems as examples - Block diagram algebra – Representation by Signal flow graph - Reduction using Mason’s gain formula, Synchro’s, AC & DC servo motor characteristics.

Module II

Frequency domain Analysis: Advantages of frequency response, frequency response of LTI system, Frequency domain specifications, correlation between time domain and frequency domain specifications.

Module III

Module IV

P, PI and PID controllers: Effect of addition of pole and zero to open loop transfer function, Design specifications– Effects of proportional derivative, proportional integral systems, and PID controllers.

Design of compensators: Practical constraints to implement PID controllers, Designing of Lag, Lead and Lead- Lag compensators, Design problems.

Module V

State Space Model: Concepts of state, state variables and state space model, derivation of state models from block diagrams, Solution of state equations. Eigen values and Stability Analysis. Diagonalization of State Matrix.

Text Books:

Reference Books:

MOOC Courses:

1. https://onlinecourses.nptel.ac.in/noc20_ee90

CO-PO/PSO Mapping

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1 PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO 10 PO 11 PO 12</td>
<td>PSO 1 PSO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>3 2 - - - - - - - - - - - - - - -</td>
<td>2 -</td>
</tr>
<tr>
<td>CO2</td>
<td>3 2 - - 2 - - - - - - - - - - -</td>
<td>- 1</td>
</tr>
<tr>
<td>CO3</td>
<td>3 2 - - - - - - - - - - - - - -</td>
<td>2 1</td>
</tr>
<tr>
<td>CO4</td>
<td>3 2 - - - - - - - - - - - - - -</td>
<td>- -</td>
</tr>
</tbody>
</table>
Course Objectives:
1. To improve the communication skills, body language, facial expression and gesture.
2. To be able to understand the concept of employability skills (Quantum dexterity) and enhancing ones' behavior in the personal, professional and social forum.
3. To evaluate the LSRW (listening, speaking, reading and writing) through assessment.
4. To learn the basic grammar for improving spoken and written communication.
5. To become problem solver, analyze and apply critical and analytical skills.
6. To identify the Employability skills, assigning tasks (Group Discussion, JAM, Role play etc.,) for day today evaluation.

Course Outcomes: After undergoing this course, the student will be able to;
1. Understand the explicit and implicit of importance of employability skills.
2. Demonstrate life skills like team work, learning skills, problem solving, attitude, adaptability and flexibility.
3. Apply critical and analytical skills to bring out the solution on problem/case study.
4. Recognize the need of appropriate words, Phrases & functional grammar and apply them in both spoken and written communication.

Module I: Wings of Fire
Grammar
Vocabulary- Omission of Articles, Collective Nouns, Prepositions, Collocations.
Reading- Observation Passage, Survey Passage
Writing- Narrative & Descriptive writing.

Module II: 5 Points Someone
The Gift an extract from 5 Points Someone by Chetan Bhagat
Grammar -
Vocabulary- Advanced Collocations, Proverbs, Idioms, One word Substitute
Reading – Complex passage, Reading Comparison,
Writing- Usage of Idioms and Proverbs in Passage

Module III: Wise Leaders Wanted & Shift Your Perspective: Connect to Your Noble Purpose
“Wise Leaders Wanted & Shift Your Perspective: Connect to Your Noble Purpose” an extract from From Smart to Wise: Acting and Leading with Wisdom Kaipa, Prasad, and Navi Radjou.
Grammar
Vocabulary- Technical vocabulary, Auxiliaries and Modals,
Reading- Technical Comprehension,
Writing- Creative Resume.

Module IV: Variation Under Nature
“Variation Under Nature” an extract from Origin of Species by Charles Darwin

Grammar
Vocabulary- Coherence-Cohesive devices, Figures of speech
Reading- Inferring Reading, Reciting and Reviewing (SQ3R)

Module V: Let's Build a Company: A Start-up Story Minus the Bullshit
Let's Build a Company: A Start-up Story Minus the Bullshit by Harpreet Grover and Vibhore Goyal

Grammar
Vocabulary- Topic/Situation based Vocabulary, Tongue Twisters.
Reading- Critical Reading of known/unknown passages
Writing- Common Errors in Tenses, Description of hobbies, Future plans,
Reporting Speech: Direct & Indirect Speech, Email Writing, Formal letter writing (Enquiry, Apology, Leave, Request) Notice Writing, Information Transfer, Technical report writing

ACTIVITY IN LABS

Activity 1:
Narration (Historical places, events, Picture narration, Memorable incidents of life)
Self Intro, Daily Routine, Likes & Dislikes, Vocabulary, Triangular Activity (Person based- S-P), Imperatives & JAM
Targeted Skills- Listening- Speaking- Audio-Video clips

Activity 2: Quantum of Dexterity (QOD)
Ability (Personal, Behavioural & Professional) Request/Permission/Order, Survival kit, Career Objective Professional, Hidden Talents (Personal), Character Traits (Behavioural)
Targeted Skills- Reading-Writing – Concluding an open-ended Story, Creative Writing.

Activity 3: Critical & Analytical Skills
SWOC- (Social & Cultural, Political, Economic, Legal Impact, Technical, Nuances of Pronunciation, Voice Modulation, Neutralizing Mother Tongue Interference, Tongue Twisters for practice,
Targeted Skills- Writing SWOC, Self-Introduction, Exposure to a structured talk.

Activity 4: Flick Flow/Extempore
Targeted Skills - Speaking Skills

Activity 5: On Job Training
Formal & Informal communication, Resume E-mail Etiquette, Telephonic & Interview Etiquette, Situation based- Santa’s Bag, topic/case study-based Group Discussion, Kicks me! (Job Consultancy/Role Play)

Targeted Skills - Listening-Writing- Speaking

Text Books

References

CO-PO MAPPING:

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>

CO-PO Mapping Chart
(3/2/1 indicates strength of correlation) 3 – High; 2 – Medium; 1 – Low
B.Tech II Year II Sem

Subject Code: 22HS4HS01

BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

(Common to ECE, EEE, ME, CSE, CSD, CSO, CSC, CSM branches)

Pre-requisite: Nil

Course Objectives:
1. Describe concepts of business economics and demand analysis to help in optimal decision making in business environment
2. Differentiate the functional relationship between Production and factors of production and able to compute breakeven point to illustrate the various uses of breakeven analysis
3. Identify various market structures and discuss their implications for resource allocation
4. Explain various accounting concepts and different types of financial ratios for knowing financial positions of business concern.
5. Demonstrate an understanding of the concept of capital budgeting and allocations of the resources through capital budgeting methods and compute simple problems for project management.

Course Outcomes:
1. Understand economics and business economic concepts
2. Differentiate different business organisations and nurture the idea of start-ups
3. Analyze operations of markets under varying competitive conditions
4. Apply accounting concepts and methods to interpret financial statements for evaluating the financial position and performance of organizations

Module I INTRODUCTION TO BUSINESS AND ECONOMICS

Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company

Module II DEMAND AND SUPPLY ANALYSIS

Elasticity of Demand: Demand, Law of Demand, Elasticity, Types of Elasticity, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand,
Demand Forecasting: Steps in Demand Forecasting, Methods of Demand Forecasting.
Supply Analysis: Determinants of Supply, Supply Function & Law of Supply
Module III PRODUCTION, COST, MARKET STRUCTURES & PRICING

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions. Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Module IV INTRODUCTION TO FINANCIAL ACCOUNTING

Final Accounts: Elements of Financial Statements, Preparation of Final Accounts: Trading account, Profit & Loss Account, Balance sheet

Module V CAPITAL BUDGETING

Capital and its Sources: Significance, types of capital, estimation of fixed and working capital requirements, methods and sources of raising capital

Capital budgeting: Features of capital budgeting proposals; Methods of capital budgeting: Payback period, accounting rate of return (ARR), net present value method and internal rate of return method (simple problems).

Text Books:

Reference Books:

Web Resources:
1. https://books.google.co.in/books/about/Managerial_economics_and_financial_analysis. html
4. http://books.google.com/books/about/Managerial_economics_and_financial_analysis
CO-PO MAPPING:

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
</tr>
</tbody>
</table>
Pre-requisite: Basic Knowledge on Computer and C language

Course Objectives: This course will enable students to
1. To provide knowledge of different Smart System applications.
2. To provide knowledge of Arduino boards, Arduino as IDE, programming language, platform and basic components
3. Develop skills to design and implement various smart system application.
4. To know the basics of micro-controllers and sensors very quickly and can start building prototype.

Course Outcomes: Students are able to
1. Analyze Smart systems applications.
2. Explain new IDE, compiler, and MCU chip in Arduino compatible boards or similar types.
3. Explain Arduino programming with Python
4. Design prototype circuits with a breadboard

Module 1: Microprocessor and Arduino
Introduction to Microprocessor, Micro controller, source mode and sink mode, Arduino pin diagram, Types of Arduino boards and its pin description.

Module 2: LED, LCD, Switch, Buzzer & Interfacing
Introduction to LED, Switch, Delay, 16X1 LCD display, 16X2 LCD display, Buzzer and Interfacing

Module 3: Motor driver and Interfacing to arduino
L293D Pin diagram, Introduction to L293D Motor driver. Interfacing DC motors to arduino,

Module 4: Sensors and Programming
Introduction to soil moister sensor, gas sensor, Ultra Sonic sensor, Temperature sensor, LDR sensor, IR sensor and PIR sensor and its pin configurations.

Module 5: Bluetooth, RFID, GSM and GPS
Introduction Bluetooth, working principal, Modes, Introduction to RFID, working Principal, Introduction to GSM and GPS, Differences, Working Principal.

Practicing Models:
1. a) Blinking an LED with a delay of 2 seconds.
 b) Blinking two LED’s alternatively with a delay of 1 second.
 c) Blinking two LED’s together with a delay of 1 second.
 d) Traffic light program Turn ON Red LED for 4 seconds, Green LED for 5 seconds, Yellow for 2 seconds
2. a) Turn ON an LED when a button is pressed, OFF when button is released.
 b) Turn ON an LED for 1 second when a button is pressed.
 c) Turn ON an LED when button is pressed for odd number of times, OFF when button is pressed for even number of times.

Final Task: Three floor elevator using Push button & LED.
3) a) Display Name on LCD
 b) Scrolling Display towards left and right on LCD
 c) Scrolling Display towards Right to Left on LCD
4) a) Read the analogue sensor (LDR Sensor) value and display it in serial monitor
 b) Turn on Buzzer if analogue sensor (LDR Sensor) value exceeds its threshold value.
 c) Read the digital sensor (IR sensor) value and display it in serial monitor.
 d) Turn on Buzzer if digital sensor (IR sensor) value is HIGH.
 Final Task: clap switch by using sound sensor
5) a) Interfacing Ultrasonic sensor to Arduino and displaying distance on screen
 b) Controlling LED using Temperature sensor with Arduino
 c) Interfacing Soil moist sensor and display the moist level on Screen
 d) Interfacing Gas sensor and display the gas level on Screen and Blink the LED
 Final Task: Design a smart Garden and Tank
 Final Task: Smart stick for blind person.
6) a) Interfacing DC motor.
 b) Interfacing Relay.
 c) Interfacing Stepper motor.
 Final Task: Automatic Tollgate system.
 Final Task: Automatic Street light control
7) a) LCD interfacing and displaying “Hello, Your Name”.
 b) Interfacing Bluetooth
 c) Interfacing GPS
 d) Interfacing GSM
 Final Task: Sending GPS location to your mobile number through GSM

TEXTBOOKS:

REFERENCE BOOKS:

CO-PO MAPPING:

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>
The Constitution of India is the supreme law of India. Parliament of India cannot make any law which violates the Fundamental Rights enumerated under the Part III of the Constitution. The Parliament of India has been empowered to amend the Constitution under Article 368; however, it cannot use this power to change the “basic structure” of the constitution, which has been ruled and explained by the Supreme Court of India in its historical judgments. The Constitution of India reflects the idea of “Constitutionalism” – a modern and progressive concept historically developed by the thinkers of “liberalism” – an ideology which has been recognized as one of the most popular political ideology and result of historical struggles against arbitrary use of sovereign power by state. The historic revolutions in France, England, America and particularly European Renaissance and Reformation movement have resulted into progressive legal reforms in the form of “constitutionalism” in many countries. The Constitution of India was made by borrowing models and principles from many countries including United Kingdom and America.

The Constitution of India is not only a legal document but it also reflects social, political and economic perspectives of the Indian Society. It reflects India’s legacy of “diversity”. It has been said that Indian constitution reflects ideals of its freedom movement; however, few critics have argued that it does not truly incorporate our own ancient legal heritage and cultural values. No law can be “static” and therefore the Constitution of India has also been amended more than one hundred times. These amendments reflect political, social and economic developments since the year 1950. The Indian judiciary and particularly the Supreme Court of India has played an historic role as the guardian of people. It has been protecting not only basic ideals of the Constitution but also strengthened the same through progressive interpretations of the text of the Constitution. The judicial activism of the Supreme Court of India and its historic contributions has been recognized throughout the world and it gradually made it “as one of the strongest court in the world”.

Course content
1. Meaning of the constitution law and constitutionalism
2. Historical perspective of the Constitution of India
3. Salient features and characteristics of the Constitution of India
4. Scheme of the fundamental rights
5. The scheme of the Fundamental Duties and its legal status
6. The Directive Principles of State Policy – Its importance and implementation
7. Federal structure and distribution of legislative and financial powers between the Union and the States
8. Parliamentary Form of Government in India – The constitution powers and status of the President of India
9. Amendment of the Constitutional Powers and Procedure
10. The historical perspectives of the constitutional amendments in India
12. Local Self Government – Constitutional Scheme in India
13. Scheme of the Fundamental Right to Equality
14. Scheme of the Fundamental Right to certain Freedom under Article 19
15. Scope of the Right to Life and Personal Liberty under Article 21