HYDERABAD INSTITUTE OF TECHNOLOGY AND MANAGEMENT

B.TECH HR-22 COURSE STRUCTURE

ELECTRONICS AND COMMUNICATION ENGINEERING

(Applicable for the batch admitted from 2022-23 onwards)

Induction program-2 weeks

I Semester (1 year)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course code</th>
<th>Course title</th>
<th>Hours Per Week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Semester-I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>22BS1MT01</td>
<td>Matrix Algebra and Calculus</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>22BS1PH01</td>
<td>Applied Physics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>22ES1CS01</td>
<td>Problem Solving using C*</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>22ES1ME03</td>
<td>Computer Aided Engineering Graphics*</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>22ES1EC01</td>
<td>Elements of Electronics and Communication Engineering</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>22BS1EG01</td>
<td>English for Skill Enhancement</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>22BS1EG02</td>
<td>English Language & Communication Skills Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>22BS1PH02</td>
<td>Applied Physics Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>22MC1HS02</td>
<td>Environmental Science</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

II Semester (1 year)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course code</th>
<th>Course title</th>
<th>Hours Per Week</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Semester-II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>22BS2MT02</td>
<td>Ordinary Differential Equations and Vector Calculus</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>22ES2EC02</td>
<td>Applied Python Programming</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>22ES2EC03</td>
<td>Fundamentals of Electrical & Electronics Engineering</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>22BS2CH01</td>
<td>Engineering Chemistry</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>22BS2CH02</td>
<td>Engineering Chemistry Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>22ES2EC04</td>
<td>Fundamentals of Electrical & Electronics Engineering Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>22ES2ME01</td>
<td>Engineering Prototyping Lab</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>22ES2ME02</td>
<td>Design Thinking Lab</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>22MC2HS01</td>
<td>Social and Health Consciousness</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
MATHEMATICAL METHODS FOR ENGINEERING

Pre-requisite: Basics of Matrices, Differentiation and Integration

Course Objectives: To provide the student with

1. Concept of rank of a matrix and applying this concept to find the solution for system of equations, if it exists.
2. Concept of eigenvalues and eigenvectors and to reduce the quadratic form to canonical form of a matrix.
3. Geometrical approach to the mean value theorems and their applications to the mathematical problems.
4. Evaluation of surface areas and volumes of revolutions of curves.
5. Evaluation of improper integrals using Beta and Gamma functions.
6. Partial differentiation, concept of total derivative.
7. Finding maxima and minima of function of two and three variables.
8. Evaluation of multiple integrals and their applications.

MODULE I

MODULE II
Quadratic form: Canonical form, Index, Signature and Nature of a quadratic form. Reduction of quadratic form to canonical form by orthogonal transformation.

MODULE III
Differential Calculus: Mean Value Theorems: Rolle’s Theorem, Lagrange’s theorem (Statement and Geometrical Interpretation) Cauchy’s mean value theorem (Statement). Taylor’s, Maclaurin’s series, applications and approximation of a function by Taylor’s series.
Integral Calculus: Applications of definite integrals to evaluate surface areas and volumes of revolution of curves (only in Cartesian coordinates). Improper integral: Beta and Gamma functions and their applications.
MODULE IV

Applications: Maxima and minima of functions of two variables and three variables using method of Lagrange multipliers.

MODULE V

Multiple Integrals: Double integrals: Evaluation of Double Integrals (Cartesian and polar coordinates), change of order of integration (only Cartesian form), change of variables (Cartesian to polar coordinates).

Triple Integrals: Evaluation of triple integrals, Change of variables (Cartesian to Spherical and Cylindrical polar coordinates).

Applications: Areas of plane region (by double integrals) and volumes (by double integrals and triple integrals).

TEXT BOOKS:

REFERENCE BOOKS:

MOOC Courses:

1. Calculus: https://nptel.ac.in/courses/111/107/111107108/
2. Calculus: https://nptel.ac.in/courses/111/105/111105122/

E- Books:
Course Outcomes: After learning the contents of this paper the student must be able to

CO1: **Determine** the rank of a matrix, solution of the system of equations, Eigen values and Eigen vectors of the matrix also canonical form of quadratic form by orthogonal transformations.

CO2: **Evaluate** surface areas, volumes of solids of revolution, improper integrals and multiple integrals.

CO3: **Find** the extremum of a multi-variable function with or without constraints.

CO4: **Apply** Multiple integrals and mean value theorems in relevant to engineering problems.

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>

CO-PO/PSO Mapping Chart
(3/2/1 indicates strength of correlation)
3 – High; 2 – Medium; 1 – Low
Course Objectives:
The objectives of this course for the student are to:

1. Understand the basic principles of quantum physics and band theory of solids.
2. Understand the underlying mechanism involved in construction and working principles of various semiconductor devices.
3. Identify the importance of nanoscale, quantum confinement and various fabrications techniques.
4. Study the characteristics of lasers and optical fibres.
5. Study the fundamental concepts related to the dielectric, magnetic and energy materials.

Pre-requisite: Basic definitions and concepts of Intermediate Physics (10+2)

Module I QUANTUM PHYSICS AND SOLIDS (12hr)

Module II SEMICONDUCTORS AND DEVICES (8hr)
Intrinsic and extrinsic semiconductors – Hall effect - direct and indirect band gap semiconductors - construction, principle of operation and characteristics of P-N Junction diode, Zener diode and bipolar junction transistor (BJT)–LED, PIN diode, avalanche photo diode (APD) and solar cells, their structure, materials, working principle and characteristics.

Module III: WAVE OPTICS & NANOTECHNOLOGY (10 hrs)
Interference: Coherence, division of amplitude and division of wave front, interference in thin films (transmitted), and Newton’s rings experiment. Diffraction: Distinction between Fresnel and Fraunhofer diffraction, Fraunhofer diffraction due to single slit, diffraction grating, determination of wavelength of light using diffraction grating.
Nanotechnology: Nano scale, quantum confinement, surface to volume ratio, bottom-up fabrication: sol-gel, precipitation, combustion methods – top-down fabrication: ball milling - physical vapor deposition (PVD) - chemical vapor deposition (CVD)

Module IV: LASERS AND FIBRE OPTICS (10 hrs)
Fiber Optics: Introduction to optical fiber- advantages of optical Fibers - total internal reflection construction of optical fiber - acceptance angle - numerical aperture-classification of optical fibers losses in optical fiber - optical fiber for communication system - applications.

Module V: DIELECTRIC, MAGNETIC AND ENERGY MATERIALS (10 hrs)
Dielectric Materials: Basic definitions- types of polarizations (qualitative) - ferroelectric, piezoelectric, and pyroelectric materials – applications – liquid crystal displays (LCD) and crystal oscillators.
Energy Materials: Conductivity of liquid and solid electrolytes- superionic conductors - materials and electrolytes for super capacitors - rechargeable ion batteries, solid fuel cells.

Text Books:
1. Applied Physics, Dr. M. N. Avadhanulu, Dr. TVS Arun Murthy, - S Chand and Company Ltd. Publications.
3. Engineering Physics by Shatendra Sharma and Jyotsna Sharma, Pearson Publication, 2019

Reference Books:
3. Modern Engineering Physics by Dr.K.Vijaya Kumar, Dr. S.Chandalingam, S.CHAND & COMPANY LTD., Publishers.
5. Introduction to Solid State Physics by Charles Kittel, Wiley India Pvt Ltd, 7th Edition
6. Modern Physics R Murugeshan, Kiruthiga Sivaprasath S.Chand publications
9. Introduction to Solid State Physics, Charles Kittel, Wiley Eastern, 2019
10. Elementary Solid State Physics, S.L. Gupta and V. Kumar, Pragathi Prakashan, 2019

MOOC Courses:
1. “Semiconductor Optoelectronics” By Prof. M. R. Shenoy, Department of Physics, IIT Delhi NPTEL visit http://nptel.iitm.ac.in

Course Outcomes:
- CO1: Explain the concepts of Quantum Physics in describing particle at micro state and its implications in formation of bands in solids
- CO2: Understand the working mechanism and characteristics of semiconductor optoelectronic devices.
- CO3: Explore the characteristics of lasers & optical fibres and their applications in various sectors by using the concepts of wave optics.
- CO4: Apply the properties of dielectric, magnetic and Nano materials in diver’s fields of applications.

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
<th>PO 6</th>
<th>PO 7</th>
<th>PO 8</th>
<th>PO 9</th>
<th>PO 10</th>
<th>PO 11</th>
<th>PO 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Problem Solving Using C
(Common to CSE/CSM/CDS/CSC/CSO/ECE/EEE/IOT)

Prerequisite: Basic mathematical, analytical and logical capability

Course Objectives:

- To learn the fundamentals of computers.
- To understand the various steps in program development.
- To learn the syntax and semantics of C programming language.
- Enable learners to design, develop and apply logic to solve mathematical and scientific problem.

Course Outcomes:

- Apply the fundamentals of computer and programming language, to draw flow chart, algorithm to solve given program.
- Comprehend the general structure of C program using control structures, functions, recursion to support reusability.
- Apply searching and sorting algorithms for the given list of elements
- Design an application to solve real world problem.

Module I

Introduction to Computer

Van-Neumann Neumann computer architecture, data representation in computer-number systems, types of software, problem techniques-algorithm- properties, constituent of algorithms / different strategies- sequence, selection and repetition, flow chart examples. Computer Systems, Computing Environments, Computer Languages, Creating and Running Programs

Basic Elements of C

Introduction to programming paradigms - Structure of C program - C programming: Data Types – Storage classes - Constants – Enumeration Constants - Keywords – variable, declarations, expressions, symbolic constants, Operators and Expressions Operator precedence and associativity of operators -Input and Output Functions-Library Functions -Header Files - Input/output statements, Assignment statements – Pre-processor directives -Compilation process

Programs:

1. Write an algorithm and draw a flowchart that will read the two sides of a rectangle and calculate its area.
2. Write an algorithm to determine a student’s final grade and indicate whether it is passing or failing. The final grade is calculated as the average of four marks.
3. Draw a flowchart to compute the final price of an item after figuring in sales tax.
4. Write a C program to evaluate algebraic expression \((ax+b)/(ax-b)\)
5. Write a simple program that prints the results of all the operators available in C (including pre/post increment, bitwise and/or/not, etc.). Read required operand values from standard input.
6. Write a simple program that converts one given data type to another using auto conversion and casting. Take the values from standard input.

Module II

Selection/Decision Making and Repetition

Decision Making and Branching: simple if, if else, if else ladder, nested if, switch, nested switch-syntax, flowchart and example programs. switch statement – the break statement -? : operator, Decision Making and Looping: while, do-while, for, nested loops-syntax, flowchart and example programs. Unconditional Branching Statements: break, continue and goto syntax, flowchart and example programs.

User Defined Functions

Need for User defined functions, a multifunction program- Elements of user defined functions Definition of Functions- Return values and their Types- Function Calls-Function Declaration Category of functions– Nesting of functions – Built-in functions (string functions, math functions) – Recursion.

Programs:

1. Write a C program to find whether a character is consonant or vowel using switch statement.
2. Write a C program to find the factorial of a given integer using recursive function.
3. Write a program to print the value of \(f(x) = ax^2 + bx + c\) for \(a = 1.0\), \(b=2.0\) and \(c = 1.0\) for \(x = 3.0\), and \(4.0\) respectively.
4. Write a program to check whether the binary representation of an integer is palindrome or not.
5. Write a program to check whether a number is Armstrong or not (e.g. \(153=13+53+33\)).
6. Write a program to compute the value of \(nCm\) using Recursion where \(n\) and \(m\) are input by user.

Module III

Arrays and Strings

variable Vs array, types of arrays- one dimensional array -declaration, initialization, accessing elements, example programs, two-dimensional array-declaration, initialization, accessing elements, example programs and multi-dimensional array example programs., Passing Arrays to Functions.

Introduction to strings, handling strings as array of characters, basic string functions available in C (strlen, strcat, strcpy, strstr etc.), arrays of strings
Pointers

Address and indirection operators, Pointer type declaration, assignment, initialization – Pointer arithmetic – Functions and pointers – Arrays and pointers -Strings and pointers – Multidimensional arrays using pointers – Pointer to arrays – Pointers to functions – Dynamic memory management

Programs:

1. Write a C program to compute sum of the elements stored in an array using pointers and user defined function.
2. Write a C program to perform the basic Matrix operations
 i) Subtraction
 ii) Addition
 iii) Multiplication
 iv) Transpose.
3. Write a C program to count the lines, words and characters in a given text
4. Write a C program to input any string and delete the extra blanks spaces present in the same
5. Write a program to concatenate 2 strings using pointers. Do not use strcat function.
6. Write a program that will read an array of integers. The program should display the elements appearing at even and odd subscript position separately.

Module- IV

Dynamic Memory Management

Dynamic Memory Allocation –Allocating a Block of memory, multiple blocks, releasing used space, altering the size of block.

Structures & Unions

Defining a Structure- initializing structures - Processing a Structure – User defined Data Types – Nested structure - Structures and Pointers - Passing Structures to Functions - Self Referential Structures- Array of structures, Union.

Programs:

1. Write a C program to Display array elements using calloc() function
2. Write a C program, by using structure to read and print data of n employees (Name, Employee Id and Salary)
3. Write a C program, which Declare a union containing 5 string variables (Name, House Name, City Name, State and Pin code) each with a length of C_SIZE (user defined constant). Then, read and display the address of a person using a variable of the union.
4. Write a C program to extract individual bytes from an unsigned int using union.
5. Write a C program to calculate the sum of n numbers entered by the user
6. Write a C program to Calculate Total and Percentage marks of a student using structure.
Module V

Data Files

Text and Binary files, Creating and Reading and writing text and binary files, appending data to existing files, Writing and reading structures using binary files, Random access using fseek, ftell and rewind functions.

Opening and Closing a Data File - Creating a Data File – Reading & writing a data file. Processing and Updating of Data Files - Unformatted Data Files - Programs using merging, searching of data file contents.

Preprocessor Directives

Commonly used Preprocessor commands like include, define, elif, else, endif, undef, if, ifdef, ifndef

Programs:

1. Write a C program to print every 5th character from current position in a given file.
2. Write a C program to merge two files into a third file
3. Write a C program for #ifdef, #else and #endif
 • “#ifdef” directive checks whether particular macro is defined or not. If it is defined, “If” clause statements are included in source file.
 • Otherwise, “else” clause statements are included in source file for compilation and execution.
4. Write a C program to display the contents of a file to standard output device.
5. Write a C program which copies one file to another, replacing all lowercase characters with their uppercase equivalents.
6. Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command line arguments.

TEXT BOOKS:

REFERENCE BOOKS:

WEB RESOURCES:

- http://computer.howstuffworks.com/c.htm
- http://www.le.ac.uk/cc/tutorials/c/
- http://www2.its.strath.ac.uk/courses/c/

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CO-PO/PSO Mapping Chart
(3/2/1 indicates strength of correlation)
3 – High; 2 – Medium; 1 - Low
B.Tech I Year–I/II Sem

Subject Code: 22ES1ME03/22ES2ME03

Computer-Aided Engineering Graphics

(Common to Mechanical, EEE, ECE, CSE, CSM, CSO, CSD and CSC)

Pre-requisite: Basic Geometry and maths.

Course Objectives:
1. To provide basic concepts in engineering drawing.
2. To impart knowledge about standard principles of orthographic projection of objects.
3. To draw sectional views and pictorial views of solids.
4. To know development of different types of surfaces.
5. To draw Isometric to Orthographic Projections and Vice-versa.

Module I

Introduction to Engineering Graphics and CAD:

Cycloid, Epicycloid, and Hypocycloid. Scales – Construction of Plain & Diagonal scales. Introduction to CAD software packages commands.

Module II

Orthographic Projections of Points and Lines:
Orthographic Projection of points: Projection of points placed in different quadrants, Orthographic Projection of straight lines inclined to one and two reference planes placed in the first quadrant only.

Module III

Orthographic Projections of Planes and Solids:
Projections of Planes inclined to one and two reference planes placed in the first quadrant only.

Module IV

Sections of Solids and Development of Lateral Surfaces
Introduction to Auxiliary views, Sections and Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone.

Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid and Cone. Development of surfaces using computer aided drafting

Module V

Isometric Projections/views:

Transformation of Projections:
Conversion of Isometric views to orthographic views.

Note: - External examination is conducted in conventional mode and internal evaluation to be done by both conventional as well as using computer-aided drafting.

TEXT BOOKS:
1. Engineering Drawing N.D. Bhatt / Charotar

REFERENCE BOOKS:
4. Engineering Drawing, N. S. Parthasarathy and Vela Murali, Oxford

Equivalent Mooc Courses :

1. https://nptel.ac.in/courses/112/104/112104172/
2. https://nptel.ac.in/courses/112/103/112103019/
3. https://www.classcentral.com/course/swayam-engineering-graphics-5305
Course Outcomes:

At the end of the course student able to

1. CO1 – Identify the suitable scale and Construct engineering curves using CAD.
2. CO2 – Demonstrate the orthographic projections of all planes and Solids.
3. CO3 – Illustrate the position of the sectional planes for given sections of solids using CAD.
4. CO4 – Convert the isometric to orthographic projections and orthographic to isometric projections of solids.

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>CO-PO Mapping Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3/2/1 indicates strength of correlation)</td>
</tr>
<tr>
<td></td>
<td>3 – High; 2 – Medium; 1 - Low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>H</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>H</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>H</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>H</td>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>
B. Tech I Year–I Sem

Subject Code: 22ES1EC01

L T P C
0 0 2 1

ELEMENTS OF ELECTRONICS AND COMMUNICATION ENGINEERING LAB (ECE)

Pre-requisite: Applied Physics

Course Objective:

1. Understand the identification and usage of components in building the electronic circuits
2. Study the color code of resistors used for Electronics
3. Understand the use of various parameters used in Electronic circuits
4. Study various Electronic devices used for signal generation

Course Outcomes: Students will able to

1. Understand the significance of Electronics and Communications
2. Identify the different components used for electronics applications
3. Measure parameters using various measuring instruments
4. Distinguish the signals used for analog and digital communications

Any 12 Experiments Should be Conducted

1. Understand the significance of Electronics and communications subjects
2. Identify the different passive and active components
3. Color code of resistors, finding the types and values of capacitors
4. Measure the voltage and current using voltmeter and ammeter
5. Measure the voltage, current with Multimeter and study the other measurements using Multimeter
6. Study the CRO and measure the frequency and phase of given signal
7. Draw the various Lissajous figures using CRO
8. Study the function generator for various signal generations
9. Study of Spectrum analyser and measure the spectrum
10. Operate Regulated power supply for different supply voltages
11. Study the various gates module and write down the truth table of them
12. Identify various Digital and Analog ICs
13. Observe the various types of modulated signals.
14. Know the available Softwares for Electronics and communication applications
15. Study of RF Signal generator
16. Study of Super Heterodyne Receiver characteristics

Text Books:
- Fundamentals of Electronic Devices and Circuits, David A Bell
- Basic Electronics, BL Tereja

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
English for Skill Enhancement
(Common to CSE/EEE/ECE/CSM/CSD/CSO/CS/ME)

PREREQUISITE(S):
1. Basic knowledge of English language
2. Structure of Sentences/ Sentence formation
4. Basic Communication Skills

COURSE OBJECTIVES:
1. To improve the language proficiency of students in English with an emphasis on vocabulary, Grammar, Reading and Writing skills.
2. To comprehend the given texts and respond appropriately
3. To integrate their ideas with those of others using summary, paraphrasing, analysis, and synthesis of relevant sources.
4. To develop learning skills and communication skills in formal and informal situations.
5. The students will analyse work(s) of literature in one or more interpretive contexts or frameworks

Module I

Vocabulary: The Concept of Word Formation -The Use of Prefixes and Suffixes - Acquaintance with Prefixes and Suffixes from Foreign Languages to form Derivatives - Synonyms and Antonyms

Grammar: Identifying Common Errors in Writing with Reference to Articles and Prepositions. Types of Conjunctions and their usage.

Reading: Reading and Its Importance- Techniques for Effective Reading.

Module II

Vocabulary: Words Often Misspelt - Homophones, Homonyms and Homographs
Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement and Subject-verb Agreement.
Reading: Sub-Skills of Reading – Study the use of graphic elements in texts.
 Skimming and Scanning – Exercises for Practice
Writing: Nature and Style of Writing- Defining /Describing People, Objects, Places and Events – Classifying- Providing Examples or Evidence.

Module III

Vocabulary: Words Often Confused - Words from Foreign Languages and their Use in English.
Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers and Tenses.
Reading: Sub-Skills of Reading – Intensive Reading and Extensive Reading – Inferring meaning-Exercises for Practice.

Module IV

Vocabulary: Standard Abbreviations in English
Grammar: Redundancies and Clichés in Oral and Written Communication.
Reading: Survey, Question, Read, Recite and Review (SQ3R Method) - Exercises for Practice
Writing: Writing Practices- Essay Writing-Writing Introduction and Conclusion -Précis, Writing

Module V

Vocabulary: Technical Vocabulary and Academic Vocabulary their Usage
Grammar: Common Errors in English (Covering all the other aspects of grammar which were not covered in the previous units)
Note: Listening and Speaking Skills which are given under Unit-6 in AICTE Model Curriculum are covered in the syllabus of ELCS Lab Course.

- **Note: 1.** As the syllabus of English given in AICTE Model Curriculum-2018 for B. Tech First Year is Open-ended, besides following the prescribed textbook, it is required to prepare teaching/learning materials by the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning in the class.

- **Note: 2.** Based on the recommendations of NEP2020, teachers are requested to be flexible to adopt Blended Learning in dealing with the course contents. They are advised to teach 40 percent of each topic from the syllabus in blended mode.

TEXT BOOK:

2. https://www.cambridgeone.org/class/learner/user_clms_8241785/bundl e/ic1

REFERENCE BOOK

2. Effective Academic Writing by Liss and Davis (OUP)

E-books:
1. High School English Grammar (issuhub.com)

Eloquent MOOC Courses:

1. http://nptel.ac.in/courses/109106067/
2. http://nptel.ac.in/courses/109104031/
4. https://onlinecourses.swayam2.ac.in/aic21_ge24/preview
5. https://onlinecourses.swayam2.ac.in/nos22_sc61/preview

Course Outcomes:
After undergoing this course, students will be able to:

CO 1: Understand explicit and implicit meaning of a text through known and unknown passages.
CO 2: Demonstrate Language skills in both formal and informal communication.
CO 3: Construct sentences using logical flow of thought and organize ideas.
CO 4: Select appropriate words, phrases & grammatical units and apply them in both spoken & written communications.

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
</tr>
</tbody>
</table>
English Language and Communication Skills Lab

(Common to CSE/EEE/ECE/CSM/CSD/CSC/CSO/ME)

Pre-requisite(s):

The knowledge of following concepts is essential to understand the subject
1. Basic knowledge of English language
2. Structure of Sentence / Sentence formation
3. Basic Grammar rules
4. Basic Communication Skills

Course Objectives:

1. To facilitate computer-assisted multimedia instruction enabling individualized and independent language learning
2. To sensitize the students to the nuances of English speech sounds, word accent, intonation and rhythm
3. To bring about a consistent accent and intelligibility in students’ pronunciation of English by providing an opportunity for practice in speaking
4. To improve the fluency of students speaking in English and neutralize their mother tongue interference.
5. To train students use language appropriately speaking in various activities like role plays, group discussions, interviews and presentation skills etc.

Note: All the given below exercises have to be performed

Exercise – I

CALL Lab:

Understand Listening Skill- Its importance – Purpose- Process- Types- Barriers- Effective Listening.

Practice: Introduction to Speech Sounds – Vowels and Consonants – Minimal Pairs Consonant Clusters - Past Tense Marker and Plural Marker- _Testing Exercises_

ICS Lab:

Understand: Spoken vs. Written language- Formal and Informal English.

Practice: Ice-Breaking Activity ,Word game JAM Session- Situational Dialogues – Greetings – Taking Leave – Introducing Oneself and Others in formal situations
Exercise – II

CALL Lab:
Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms - Stress pattern in sentences – Intonation - Testing Exercises

ICS Lab:
Practice: Situational Dialogues – Role Play - Expressions in Various Situations – Making Requests and Question tags.
Seeking Permissions - Telephone Etiquette, Telephonic interview.

Exercise - III

CALL Lab:
Understand: Errors in Pronunciation - Neutralising Mother Tongue Interference (MTI).
Practice: Common Indian Variants in Pronunciation – Differences between British and American Pronunciation - Testing Exercises

ICS Lab:
Understand: Descriptions- Narrations- Giving Directions and Guidelines – Blog Writing
Practice: Giving Instructions – Seeking Clarifications – Asking for and Giving Directions – Thanking and Responding – Agreeing and Disagreeing – Seeking and Giving Advice – Making Suggestions.

Exercise – IV

CALL Lab:
Understand: Listening for General Details.
Practice: Listening Comprehension Tests - Testing Exercises

ICS Lab:
Understand: Public Speaking – Exposure to Structured Talks - Non-verbal Communication Story telling, poster presentation
Presentation Skills, Progress, Graph Presentation, Topic specific conversations with vocabulary.
Practice: Making a Short Speech – Extempore- Making a Presentation.

Exercise – V

CALL Lab:
Understand: Listening for Specific Details.
Practice: Listening Comprehension Tests - Testing Exercises.
ICS Lab:
Understand: Group Discussion, Debates, critical thinking
Practice: Group Discussion, Debates.

Lab Manuals

Suggested Software
1) Cambridge Advanced Learners’ English Dictionary with CD.
2) Grammar Made Easy by Darling Kindersley.
3) Punctuation Made Easy by Darling Kindersley.
5) English in Mind (Series 1-4), Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge.
7) TOEFL and GRE (KAPLAN, AARCO and BARRONS, USA, Cracking GRE by CLIFFS).

Reference Books:
1. Effective Communication Skills: Tips on How to Improve Your Social Skills and Interact with Others Effectively by Robert Cunningham, Independently Published, 2018

Course Outcomes:
1. CO1: Acquire vocabulary and use it contextually
2. CO2: Apply listening and speaking skills effectively
3. CO3: Develop proficiency in academic reading and writing
4. CO4: Build up the possibilities of job prospects

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
</tr>
</tbody>
</table>
Pre-requisite: Concepts of Applied Physics Theory and knowledge of intermediate (10+2) physics

Course Objectives: The objectives of this course for the student to
1. Capable of handling instruments related to the Hall Effect and photoelectric effect experiments and their measurements.
2. Understand the characteristics of various devices such as PN junction diode, Zener diode, BJT, LED, solar cell, lasers and optical fiber and measurement of energy gap and resistivity of semiconductor materials.
3. Able to measure the characteristics of dielectric constant of a given material.
4. Study the behaviour of B-H curve of ferromagnetic materials.
5. Understanding the method of least squares fitting

List of Experiment (Perform any 8 of the following experiment)

1. Determination of work function and Planck’s constant using photoelectric effect.
2. Determination of Hall co-efficient and carrier concentration of a given semiconductor.
3. V-I characteristics of a p-n junction diode and Zener diode
4. Input and output characteristics of BJT (CE configurations)
5. Diffraction Grating:
 a) To determine the wavelength of given laser and grating parameters
 b) To determine the wavelength of a given light source using grating (spectrometer)
6. Newton’s Rings Experiment:
 a) To determine the radius of curvature of given Plano convex lens
7. Optical fiber:
 a) To determine Numerical aperture and Acceptance angle of a given optical fiber cable.
8. Energy band gap of Semiconductor:
 a) To determine Energy band gap of a semiconductor diode
9. Optoelectronics Devices:
 a) Light Emitting Diode: To study the V-I characteristics of LED
 b) Solar Cell: To study the V-I characteristics of Solar cell
10. Study B-H curve of a magnetic material.
11. Determination of dielectric constant of a given material
13. Determination of the resistivity of semiconductor by two probe method.

Text Books:
2. Laboratory manual of Engineering Physics, Dr. Y Aparna, Dr.K.Venkateswara Rao, VGS techno series, 2010.

Course Outcomes:
- CO1: Determination of the Planck’s constant using Photo electric effect and identify the material whether it is n-type or p-type by Hall experiment.
- CO2: Analyse the V-I characteristics of semiconductor optoelectronic devices.
- CO3: Describe the variations in the magnetic field, the dielectric constant, and the hysteresis curve's behaviour.
- CO 4: Apply the concepts of optics for study the characteristics of laser & fiber optical devices

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL SCIENCE
(Common to CSE/EEE/ECE/MECH/CSM/CSD/CSC/CSO)

Course Objectives:

1. Understanding the importance of ecological balance for sustainable development.
2. To educate students about natural resources and their exploitation
3. Understanding the concepts of green chemistry and its applications.

Module I ECOSYSTEMS AND ECOLOGY

Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids, Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

Module II NATURAL RESOURCES

Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. Mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, Land resources: Forest resources, Energy resources: growing energy needs, renewable and non-renewable energy sources, use of alternate energy source, case studies.

Module III BIODIVERSITY AND BIOTIC RESOURCES

Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity, consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit, Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

Module IV ENVIRONMENTAL POLLUTION AND SOLID WASTE

Module V GREEN CHEMISTRY & HAZARDOUS CHEMICALS

Introduction & Principles, green solutions for chemical energy storage, green chemistry solutions will be discussed within the fields of Chemical production: choice of feedstock, solvents, catalysts, synthesis routes including microwave and ultrasonic assisted synthesis. Classification of hazardous chemicals, transportation of hazardous chemicals, Hazchem code, Storage and handling of hazardous substances, Emergency preparedness (on site & offsite), Safety audit, Concept of fire and explosion, Major accidents involving hazardous substances

Text Books:

1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
2. Environmental Studies by R. Rajagopalan, Oxford University Press.

Course Outcomes:

CO-1: Understand the importance of ecosystem and ecological balance in conservation of biodiversity.
CO-2: Understand the concepts of natural resources and its exploitation.
CO-3: Explain the control of pollution for sustainable environment.
CO-4: Explain the concepts green chemistry, its applications.

CO-PO MAPPING:

<table>
<thead>
<tr>
<th>CO-PO/PSO Mapping Chart(3/2/1 indicates strength of correlation)</th>
<th>3 – High; 2 – Medium; 1 - Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>
ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS
(Common to EEE/MECH/ECE/CSE/CSC/CSD/CSM/CSO)

Pre-requisite: Mathematics of 10+2 level

Course Objectives: To provide the student with

1. Methods of solving Ordinary Differential Equations of first & higher order and their applications.
2. Concept of Laplace Transforms, inverse Laplace Transforms and their properties.
4. The Physical quantities involved in engineering field related to vector valued function.
5. The basic properties of vector valued functions and their applications to line, surface and volume integrals.

MODULE I
First Order ODE: Geometric interpretation of solutions of first order ODE \(\frac{dy}{dx} = f(x, y) \).
Exact differential equations, Integrating factors, Linear and Bernoulli’s equations.

MODULE II
Higher Order Ordinary Differential Equations
Higher order homogeneous and non-homogeneous linear differential equations with constant coefficients. Non-homogeneous terms of the type \(e^{ax}, \cos ax, \sin ax, x^k, e^{ax}V \) and \(x^kV \). Method of variation of parameters.
Cauchy-Euler’s and Legendre’s differential equations. Applications: Electrical Circuits (Both first and second order).

MODULE III
Laplace Transforms: Laplace Transform of standard functions; first and second shifting theorems; Laplace transforms of functions when they are multiplied and divided by ‘t’.
Laplace transforms of derivatives and integrals of function; Laplace transforms of Unit step and Impulse functions; Laplace transform of periodic functions.
Inverse Laplace Transforms: Finding inverse Laplace transforms by different methods, convolution theorem (without proof), Solving Ordinary Differential Equations with constant coefficient with given conditions by Laplace Transform method.
Vector Differentiation: Scalar and vector point functions, Concepts of gradient, divergence and curl of functions in Cartesian framework, Solenoidal fields, irrotational fields, vector identities.

Vector Line Integral: Evaluation of the line integral, concept of work done by a force field, Conservative fields and Potentials.

MODULE V
Surface and Volume Integration: Evaluation of surface and volume integrals, flux across a surface.
Vector Integral Theorems: Green’s, Gauss and Stokes theorems (without proofs) and their applications.

TEXT BOOKS:

REFERENCE BOOKS:

Course Outcomes: After learning the contents of this paper the student must be able to

CO1: Solve first, higher order ODE and appreciate their applications in engineering problems.
CO2: Apply Laplace Transforms techniques to solve Ordinary Differential Equations with constant coefficient with given conditions.
CO3: Calculate Divergence, Curl of vector point function and gradient of scalar point function.
CO4: Evaluate Line, Surface and Volume integrals and converting them from one to another.

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>
B. Tech I Year–II Sem

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Subject Code: 22ES2EC02

APPLIED PYTHON PROGRAMMING

Course Objective: The objectives of the lab are to:
1. Understand the basics of python programming
2. Write codes in python programming
3. Understand the importance of python in electronic applications
4. Write the code in python for various applications using raspberry pi

Course Outcomes: Upon completing this course, the students will be able to
1. Build basic programs using fundamental programming constructs
2. Execute python codes for different applications
3. Design various applications using Raspberry Pi
4. Implement the application on hardware boards

Syllabus

Module - I

Basics of Python Programming: Features of Python, variables and identifiers, operators and expressions. Decision control Statements: Selection/Conditional branching statements, basic loop structures/iterative Statements, nested loops, break, continue, and pass Statements.

Functions and Modules: function definition, function call, more on defining functions, recursive functions, modules. Data Structures: Strings : Introduction, built-in string methods and functions, slice operation, String Module. Regular Expressions.

Programming:

Week 1:
1. Downloading and Installing Python and Modules
 a) Python3 on Linux (Follow the instructions given in the URL https://docs.python-guide.org/starting/install3/linux/)
 b) Python3 on Windows (Follow the instructions given in the URL https://docs.python.org/3/using/windows.html (Please remember that Windows installation of Python is harder!)
 c) pip3 on Windows and Linux (Install the Python package installer by following the instructions given in the URL https://www.activestate.com/resources/quick-reads/how-to-install-and-use-pip3/)
 d) Installing numpy and scipy (You can install any python3 package using the command pip3 install <packagename>)
 e) Installing jupyter lab (Install from pip using the command pip install jupyterlab)

Week 2: Introduction to Python3
 a) Printing your biodata on the screen
 b) Printing all the primes less than a given number
 c) Finding all the factors of a number and showing whether it is a perfect number, i.e., the sum of all its factors (excluding the number itself) is equal to the number itself

Week 3:

Defining and Using Functions
 a) Write a function to read data from a file and display it on the screen
 b) Define a Boolean function is palindrome(<input>)
 c) Write a function collatz (x) which does the following: if x is odd, x = 3x + 1; if x is even, then x = x/2. Return the number of steps it takes for x = 1
d) Write a function $N(m, s)=\exp\left(-\frac{(x-m)^2}{2s^2}\right)/\sqrt{2\pi}s$ that computes the Normal distribution

Module - II

Lists: Introduction, nested list, cloning lists, basic list operations, list methods. Functional programming(filter(),map(),reduce() function.

Tuples: Introduction, basic tuple operations, tuple assignment, tuples for returning multiple values, nested tuples, tuple methods and functions. Set: Introduction, Set operations.

Dictionaries: Basic operations, sorting items, looping over dictionary, nested dictionaries, built-in dictionary functions, Programming of python

Programming:

Week 4: The package numpy
a) Creating a matrix of given order mxn containing random numbers in the range 1 to 99999
b) Write a program that adds, subtracts and multiplies two matrices. Provide an interface such that, based on the prompt, the function (addition, subtraction, multiplication) should be performed

c) Write a program to solve a system of n linear equations in n variables using matrix inverse

Week 5: The package scipy and pyplot
a) Finding if two sets of data have the same mean value
b) Plotting data read from a file
c) Fitting a function through a eta data points using polyfit function
d) Plotting a histogram of a given data set

Week 6: The string s package
a) Read text from a file and print the number of lines, words and characters
b) Read text from a file and return a list of all n letter words beginning with a vowel
c) Finding a secret message hidden in a paragraph of text
d) Plot a histogram of words according to their length from text read from a file

Module III: Getting started with Raspberry Pi

Introduction to Raspberry Pi, Comparison of various Rpi Models, Understanding SoC architecture and SoCs used in Raspberry Pi, Pin Description of Raspberry Pi, On-board components of Rpi,

Programming:

Week 7: Explanation of Raspberry Pi, Pin description and On –board components with board

Module IV: Booting Up RPi- Operating System and Linux Commands

Linux- Introduction, Architecture, File System, Raspbian O.S.- Introduction, Tools like Leafpad Editor, Installing Raspbian on Pi, First boot and Basic Configuration of Pi, Popular Linux Commands, Sensors interfacing concepts, Motion sensor, photo diode, 7-segment display, Basic programing for interfacing

Programming:

Week 8: Installing OS on Raspberry Pi
 a) Installation using Pilmager
 b) Installation using image file
 ✓ Downloading an Image
 ✓ Writing the image to an SD card
 • using Linux
 • using Windows
 ✓ Booting up
Follow the instructions given in the URL

Week 9: Collecting Sensor Data
a) DHT Sensor interface
b) Connect the terminals of DHT GPIO pins of Raspberry Pi.
c) Import the DHT library using `import Adafruit_DHT`
d) Read sensor data and display it on screen.

Week 10:
Interfacing Motion sensor to Raspberry Pi

Module V: GUI Programming: Introduction, Tkinter and Python Programming, Brief Tour of Other GUIs, Related Modules and Other GUIs

Programming:

Week 11: Accessing GPIO pins using Python
a) Installing GPIO Zero library.
First, update your repositories list: `sudo apt update`
Then install the package for Python 3: `sudo apt install python3-gpiozero`
b) Blinking an LED connected to one of the GPIO pin
c) Adjusting the brightness of an LED
d) Adjust the brightness of an LED (0 to 100, where 100 means maximum brightness) using the in-built PWM wavelength.

Week 12:
Interfacing 7-Segment display to Raspberry Pi

Week 12:
Interfacing Photo resistor to Raspberry Pi

Text books:
3. Albert Lukaszewski, “Mysql for python “, PACKT publishers

CO-PO mapping

<table>
<thead>
<tr>
<th>CO</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FUNDAMENTALS OF ELECTRICAL AND ELECTRONICS ENGINEERING

Pre-requisite: Basic Mathematics & Physics

Course Objectives:
1) To introduce the concepts of electrical circuits and their components
2) To understand DC circuits and AC single-phase & three-phase circuits
3) To study and understand diode and applications
4) To introduce the concept of BJT
5) To introduce the concepts of FET

Course Outcomes:
1) Analyze the electrical circuits with DC excitation.
2) Analyze electrical circuits with AC excitation
3) Explain the working principles of BJT
4) Describe the operation of FET

Module I: D.C. & A.C Circuits
DC Circuits: Current, Voltage, Power, Energy, Ohm’s law, types of elements, types of sources, resistive networks, inductive networks, capacitive networks -series & parallel circuits, Voltage and current divide rule, Thevenin’s theorem, Norton’s theorems with DC excitation
A.C. Circuits
Representation of sinusoidal waveforms, Average and rms values, peak factor and Formfactor. Analysis of single-phase ac circuits consisting of R, L, C, RL, RC, RLC combinations (series).

Module II: Electrical Machines
Single Phase Transformers: principle of operation of Single-phase transformer, EMF equation, losses in transformers, efficiency, Condition for Maximum Efficiency

Module III:
Diodes: Diode - Static and Dynamic resistances, Equivalent circuit, Diffusion and Transition Capacitances, V-I Characteristics, Diode as a switch- switching times, Zenor diode characteristics.
Diode Applications: Rectifier - Half Wave Rectifier, Center tap Full Wave Rectifier, Bridge Rectifier, Rectifiers with Capacitive Filters, Clippers-Clipping at two independent levels, Clamper-Clamping Circuit Theorem, Clamping Operation, Types of Clampers.
MODULE-IV
Bipolar Junction Transistor (BJT): Construction, Transistor biasing, Operation of NPN and PNP transistors, Input Characteristics, Output characteristics for CB, CE, CC configurations, Transistor as a switch, Transistor as an amplifier, Breakdown in transistors

MODULE-V
Field Effect Transistor (FET): Construction, Principle of Operation N-Channel JFET, characteristics parameters of JFET, Pinch-Off Voltage, Volt-Ampere Characteristic, Comparison of BJT and JFET, Applications of JFET, MOSFET, Enhancement MOSFET, Depletion MOSFET, Comparison of MOSFET and JFET.

TEXT BOOKS:
2. Jacob Millman - Electronic Devices and Circuits, McGraw Hill Education

REFERENCE BOOKS:

Web Resources:
1. https://nptel.ac.in/courses/108/104/108104139/
2. https://nptel.ac.in/courses/117/103/117103063/

E- Books:
1. https://www.academia.edu/42933156/Basic_Electrical_Engineering.VK.Mehta

CO-PO/PSO Mapping Chart
(3/2/1 indicates strength of correlation)
3 – High; 2 – Medium; 1 - Low

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>
Pre-requisite: Basic knowledge of chemistry (Physical, Organic, Inorganic and Analytical chemistry)

Course Objectives:

1. To bring adaptability to new developments in Engineering Chemistry and to acquire the skills to become a perfect engineer.

2. To include the importance of water in industrial usage, fundamental aspects of battery chemistry, significance of corrosion it's control to protect the structures.

3. To imbibe the basic concepts of fuels and its products.

Module I: WATER AND ITS TREATMENT

Module II: BATTERY CHEMISTRY & CORROSION

Introduction - Classification of batteries- primary, secondary and reserve batteries with examples. Basic requirements for commercial batteries. Construction, working and applications of Zn-air and Lithium-ion batteries, Applications of Li-ion batteries to electrical vehicles. Fuel Cells- Differences between the battery and a fuel cell, Construction and applications of Methanol Oxygen fuel cell and Solid oxide fuel cell. Solar cells - Introduction and applications of Solar cells. Corrosion- Causes and effects of corrosion, theories of chemical and electro-chemical corrosion, mechanism of electro- chemical corrosion, types of corrosion: Galvanic, water-line and pitting corrosion, factors affecting the rate of corrosion, Corrosion control
methods, current methods. Chemical Sciences & Tech thodic protection, Sacrificial anode and impressed Head

Module III: ENERGY SOURCES

Module IV: SPECTROSCOPY AND ITS APPLICATIONS

Module V: GENETICS AND BIOMOLECULES

Introduction to cell and its components, gene, mendel's laws, Concept of segregation and independent assortment. Concept of genetic material passes from parent to offspring. Concept of allele, Gene mapping, Gene interaction, Gene editing, Introduction to CRISPR technology Concept of genetic code. Biomolecules- Introduction, Molecules of life- carbohydrates (Glucose and fructose), Amino acids (Types and classification), peptides and proteins (structural and active sites), DNA (single/double stranded) RNA (Types). Concept of transcription and translation, Protein structural predictions-Homology modelling, Biological Databases (NCBI, RCSB-PDB)

Text Books:

Reference Books:

E-Books:
http://bes.whfreeman.com/vollhardtshore5e/default.asp

Equivalent MOOC Courses:
Concepts of Chemistry for Engineering
https://onlinecourses.nptel.ac.in/noc21cv49/announcements?force-true

Course Outcomes:

After completion of this course student will able to

CO 1: Identify the suitable method for the treatment of given water sample for industrial and domestic purpose.
CO 2: Explain the concepts of electrochemistry and corrosion with their engineering applications.
CO 3: Explain the concepts of spectroscopy, analysis and interpretation of quality and quantity of hydrocarbons or fuels.
CO 4: Understand the concept of genetics and biomolecules.

CO-PO Mapping Chart

(3/2/1 indicates strength of correlation) 3-High; 2-Medium; 1-Low

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>
B.Tech. I Year–I Sem/II Sem
Subject Code: 22BS1CH02/22BS2CH02

ENGINEERING CHEMISTRY LAB
(Common to CSE/ECE/CSM/CSD/CSC/CSO)

Pre-requisite: Concepts of Chemistry at 10+2 level

Course Objectives:

The student will learn

- Estimation of hardness and chloride content in water to check its suitability for drinking purpose.
- Students are able to perform estimations of acids, bases and ions using conductometry, potentiometry and colorimetric methods.
- Students will learn skills related to the lubricant properties such as saponification value, surface tension and viscosity of oils.
- To check the purity of organic molecules by thin layer chromatographic (TLC) technique.

List of Experiments:

I. Volumetric Analysis

1. Determination of total hardness of water by complexometric method using EDTA
2. Determination of chloride content of water by Argentometry

II. Instrumental Analysis

1. Estimation of an HCl by Conductometric titrations
2. Estimation of Acetic acid by Conductometric titrations
3. Estimation of HCl by Potentiometric titrations
4. Estimation of copper ion by colorimetric method.

III. Lubricants

1. Determination of acid value of coconut oil.
2. Determination of viscosity of castor oil by using Ostwald’s viscometer
3. Determination of surface tension of a give liquid using stalagmometer.
IV. Virtual Lab Experiments

1. Batteries for electrical vehicle
2. Functioning of solar cell and its applications
3. Homology modelling of proteins

Reference Books:

1. Lab manual for Engineering chemistry by B. Ramadevi and P. Aparna, S Chand Publications, New Delhi (2022)
3. Inorganic Quantitative analysis by A.I. Vogel, ELBS Publications.

Course Outcomes: Students will be able to

CO1: Estimate the hardness and chloride content in given water sample.

CO2: Determination of physical properties like acid value, surface tension and viscosity.

CO3: Determine the strength of the given sample by appropriate instrumental method.

CO4: Execute the virtual lab experiments using simulation tool-Functioning of electric vehicle, solar cell and homology modelling.

CO-PO Mapping Chart

(3/2/1 indicates strength of correlation) 3 – High; 2 – Medium; 1 – Low

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
</tbody>
</table>
B. Tech I Year–II Sem

Subject Code: 22ES2EC04

FUNDAMENTALS OF ELECTRICAL AND ELECTRONICS ENGINEERING LAB

Pre-requisite: Elements of Electrical & Electronics Lab

Course Objectives:
1. To introduce the concepts of electrical circuits and its components.
2. To get the practical experience with the operation and applications of electromechanical energy conversion devices.
3. To learn the operation of Diodes
4. To Work on BJT and JET

Course Outcomes:
1. Analyze the electrical circuits with DC excitation.
2. Analyze electrical circuits with AC excitation
3. Explain the working principles of BJT
4. Describe the operation of FET

Note: Any 12 experiments should be conducted

1) Verification of KVL and KCL
2) Verification of Thevenin’s and Norton’s theorem.
3) Calculations and Verification of Impedance and Current of RL, RC and RLC series circuits.
4) Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single-Phase Transformer
5) PN Junction diode characteristics A) Forward bias B) Reverse bias.
6) Half Wave Rectifier with & without filters
7) Full Wave Rectifier with & without filters
8) Types of Clippers at different reference voltages
9) Types of Clampers at different reference voltages
10) Input and output characteristics of BJT in CB Configuration
11) Input and output characteristics of BJT in CE Configuration
12) Input and output characteristics of BJT in CC Configuration
13) Zener diode characteristics and Zener as voltage Regulator
14) MOSFET Characteristics
TEXT BOOKS:
2. Jacob Millman - Electronic Devices and Circuits, McGraw Hill Education

REFERENCE BOOKS:

Web Resources:
1. https://vlab.amrita.edu/?sub=1&brch=75
2. https://nptel.ac.in/courses/117/103/117103063/

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
</tr>
</tbody>
</table>

CO-PO/PSO Mapping Chart
(3/2/1 indicates strength of correlation)
3 – High; 2 – Medium; 1 - Low
B.Tech I Year–I/II Sem

Subject Code: 22ES1ME01/ 22ES2ME01

Engineering Prototyping Lab
(Common to CSE/EEE/ECE/CSM/CSD/CSC/CSO/MECH)

Prerequisites: Practical skill

Course Objectives:
1. To provide the basic knowledge of fundamental tools used by engineers in a manufacturing environment, wiring in electrical circuits, design of electronic components on PCB and knowledge on computer peripherals.
2. To gain a basic working knowledge required for the production of various engineering products.

List of Experiments:

PART A: Mechanical Workshop

Note: Any Seven experiments should be conducted from all Trades

1. Carpentry – (T-Lap Joint, Dovetail Joint, Mortise & Tenon Joint)
2. Fitting – (V-Fit, Step Fit , Dovetail Fit & Semi-circular fit)
3. Tin-Smithy – (Open Scoop, Rectangular Tray & Conical Funnel)
5. Welding Practice – (Arc Welding- Lap or Butt joint)
6. Black Smithy – (‘S’ hook or Round rod to Ring)
7. House wiring-(One lamp control by using Two 2-way switches (staircase wiring), Wiring of distribution box with MCB, Wiring of three bulbs - Series & parallel connections).

PART B: IT Workshop

Note: Any three experiments should be conducted

1. Draw the block diagram of the PC and peripherals that can be assembled and disassembled.
2. Every student should individually install MS windows/ Linux/Duel Booting on the
personal computer.
3. Installation of Application software in PC (Modelling/Simulation /Automation)
4. Hardware Troubleshooting: Students have to be given a Pthatch does not boot due to improper assembly or defective peripherals. They should identify the problem and fix it to get the computer back to working condition.
5. Software Troubleshooting: Students have to be given a malfunctioning CPU due to system software problems. They should identify the problem and fix it to get the computer back to working condition.
6. Internet & World Wide Web: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations.

TEXTBOOKS:

1. Workshop Practice /B. L. Juneja / Cengage
2. Workshop Manual / K. Venugopal / Anuradha
3. Experiments in Basic Electrical Engineering by S.K.Bhattacharya , Rastogi- NAI.
4. Industrial Safety management by Deshmukh –TMH

REFERENCE BOOKS:

2. Workshop Manual / Venkat Reddy/ BSP
3. Residential and Commercial Industrial Electrical systems Vol.2 by Joshi-TMH
4. Residential and Commercial Industrial Electrical systems Vol.3 by Joshi-TMH
5. Industrial Safety management by Deshmukh –TMH

Web resources:

Course Outcomes:
At the end of the course, students must be able to

1. Fabrication of electrical circuit.
2. Identify and apply suitable tools for different trades of engineering processes.
3. Apply the learnt knowledge for installing operating system, presentations, documentation.
4. Make a prototype by applying domain knowledge.

CO-PO Mapping:

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td>L</td>
</tr>
<tr>
<td>CO2</td>
<td>H</td>
</tr>
<tr>
<td>CO3</td>
<td>H</td>
</tr>
<tr>
<td>CO4</td>
<td>H</td>
</tr>
</tbody>
</table>
B.Tech I Year–I/II Sem

Subject Code: 22ES1ME02/22ES2ME02

Design Thinking Lab
(Common to Mechanical, EEE, ECE, CSE, CSM, CSO, CSD and CSC)

Pre-requisite:

Course Objectives:
1. Apply domain knowledge to the design of community based projects.
2. Identify and acquire new knowledge as a part of the problem solving / design process.
3. Design products on multidisciplinary concepts and an appreciation for the contributions from individuals from multiple disciplines.
4. Build a role that their discipline can play in social contexts.
5. Provide significant service to the community while learning; gain an understanding of the role that engineering (and their discipline) can play in society.

Module 1:
Problem Identification
Introduction to EPICS, Idea Generation, Brainstorming

Societal Survey
Rural area Survey (societal issues), interaction with NGOs, Idea Generation and Group Discussions.

Module 2:
Specification Development
Customer Requirement, Design Constraints, Engineering Specifications
Product Survey
Community Partner allotment, Design Thinking activity

Module 3:
Conceptual Design
Decision matrix, community partner interview, Brainstorming (possible solutions)

Poster Presentation
Documentation & Team wise presentation

Module 4:
Project Specification
Prototype-1 Development, Testing, customer feedback

Project Specification
Prototype-1 presentation, Feedback Report of customer & advisor, Action plan for the next prototype
Module 5:
Detailed Design
Video preparation on conceptual design, Prototype-2 Development, Testing, customer feedback, Presentation

Detailed Design
Make progress on the project and appropriately engage project partners, Complete Design review feedback summary, and Individual and Project documentation

Text Books:

Reference Books:

Web Resources:
https://engineering.purdue.edu/EPICS/Resources/Lectures,
https://unnatbharatabhiyan.gov.in:8443/new-website/
http://www.engineeringchallenges.org/GrandChallengeScholarsProgram.aspx
https://www.ewb-india.org/

Course Outcomes:
1. CO1 – Apply disciplinary knowledge to real and possibly ill-defined problems.
2. CO2 – Collaborate with people from other disciplines and develop an appreciation for multi-disciplinary contributions in design.
3. CO3 – Build the broad set of skills needed to be successful in the changing global workplace and world.
4. CO4 – Acquire knowledge regarding project management.

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
<th>Program Specific Outcomes*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
<td>PO 2</td>
</tr>
<tr>
<td>CO1</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td>H</td>
</tr>
</tbody>
</table>

* If more PSOs are there in a particular branch, required no of columns can be added.
Course Objectives:
1. To promote positive health, prevention of stress related to health problems and rehabilitation through Yoga.
2. To impart skills in the students to introduce Yoga for health to general public
3. To invoke scientific attitude and team spirit to channelize their energies in to creative and constructive endeavours.
4. The main objective of National Service Scheme is personality development through social service or community service and through physical education.

Module I

Unit 1: Introduction to Yoga and Importance of Yogic practices
Definition, nature and scope of yoga-Elements of Yoga in Vedic and Upanashadic literature. -Development of yoga through the ages. - Schools of yoga: Karma Yoga, Bhakti Yoga, Jnana Yoga, Hatha yoga, Raja yoga and Mantra Yoga. General benefits of Yoga Practices, preparing oneself for yoga practices, Comparison between yoga practices and other systems of physical exercises through practical examples.

Unit 2: Concept of Yoga Practices and its Types
Types of Yoga - Hatha Yoga, Raja Yoga, Laya Yoga, Bhakti Yoga, Gyan Yoga, Karma Yoga, Asthanga Yoga, Relevance of Yoga in modern life. Yama and Niyama (Attitude Training Practices), Asana (Steady Postures), Pranayama (control of the breathing process), Mudras and Bandhas (seal and lock for energy), Shat Kriya (six purification techniques), Dhyana (Meditation)

Module II

Unit 3: Asana
Definition, Scope and limitations of Asana, Classification of Asanas and different types of Asanas relating to posture, Role of asana in yogic spiritual Yogic culture and Physical culture, different stage and phases in the performing of asana, Comparison between Asanas and other systems of physical exercises through practical examples.

Unit 4: Pranayama
Definition, Different phases of Pranayama, Importance of Pranayama in Yogic Curriculum, Comparison between pranayama & deep breathing exercises with practical examples.
Module III

Unit 5: Introduction to the physical education and ethics in sports

Meaning & Definition of Education - Aim & Objectives of Education - Importance of Education in the Modern Era - Meaning & Definition of Physical Education.

Unit 6: Olympic, Commonwealth and Asian Games

Ancient Olympic Games – Historical Background, Significance of Ancient Games.
Modern Olympic Games: Olympic Motto, Emblem, Rings, International Olympic Committee (IOC), function of IOC - Asian Games

Module 4

Unit 7: Philosophy of National Service Scheme (NSS)

Introduction and Basic Concepts of NSS, History and Philosophy & Definition of NSS, Aims & Objectives of NSS, Emblem, flag, Motto, Song, Badge, NSS day etc., Organizational structure (from national to regional level), Roles and responsibilities of various NSS functionaries

Unit 8: NSS Programmes and Activities

NSS Programmes and Activities, Concept of regular activities (one day camp), special seven-day conduction camping, day and night camps and relevance of celebration of important days recognized by United Nations, Centre, State Govt. & University, Basis of adoption of village/slums, methodology of conduction survey, financial pattern of the scheme, Coordination with different agencies, Maintenance of the diary

Module 5

Unit 9: Community Mobilization

Functioning of community stakeholders, Designing the message in the context of the problem and the culture of the community, Identifying methods of mobilization, Youth-Adult partnership, Concept of Community development
Unit 10: Volunteerism and Government Organisations /Non-Government Organisations

Indian tradition of volunteerism, Value system of volunteerism, Motivation and constraints of volunteerism, Role of NSS volunteers in Swatch Bharat Abhiyan, Role of NSS volunteers in Digital India, Sources of funding National Service Scheme (NSS)-Government organisations (GO) and Non-Government organisations (NGO).

Text Books:

1. The Heart of Yoga: Developing a Personal Practice by T.K.V. Desikachar
2. The Yoga Sutras by Satchidananda
3. Freeman–PhysicalEducationinChangingSociety

Reference Books:

1. Yoga The Spirit and Practice of Moving into Stillness by Erich Schiffmann
2. Yoga Anatomy by Leslie Kaminoff
3. Essentials of Physical Education” By Ajmer Singh & Jagdish

Web Resources:

Course Outcomes: Upon completion of the Course, the students will be able to:

1. CO1: Enable the student to have good health and mental hygiene.
2. CO2: Possess emotional stability to integrate moral values through social service.
3. CO3: Attain higher level of consciousness in both physical and mental status.
4. CO4: Understand the concept of ill health and their remedies through yoga.
CO-PO/PSO Mapping Chart

(3/2/1 indicates strength of correlation)

3 – High; 2 – Medium; 1 – Low

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>Program Outcomes (POs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PO 1</td>
</tr>
<tr>
<td>CO1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
</tr>
</tbody>
</table>