ARTIFICIAL INTELLIGENCE

CO1: To explore intelligent systems and identify characteristics of general problems related to artificial intelligence
CO2: To analyze logic programming and represent knowledge using networks and frames
CO3: To differentiate between expert systems & traditional systems and apply probability theory in building expert systems
CO4: To compare supervised and unsupervised learning in machine learning environment
CO5: To represent knowledge with advanced techniques such as grammars

Data Warehousing and Data Mining

CO1 -To understand the basic principles, concepts and applications of data warehousing and data mining
CO2- To introduce the task of data mining as an important phase of knowledge discovery process
CO3- Categorize and carefully differentiate between situations for applying different data mining techniques: mining frequent pattern, association, correlation, classification, prediction, and cluster analysis;
CO4-Discover and measure interesting patterns from different kinds of databases.
CO5-understand classification by decision tree induction
CO6-Apply the techniques of clustering to real world data

Design Patterns

CO1- Construct a design consisting of a collection of modules
CO2- Exploit well-known design patterns (such as Iterator, Observer, Factory and Visitor).
CO3- Express the appropriate roles of sub typing and inheritance, and use them effectively.
CO4- Ability to understand and apply common design patterns to incremental/iterative development.
CO5- Ability to identify appropriate patterns for design of given problem.
CO6- Applying the software development concepts, abilities, and skills, from analyzing a problem for implementing a solution
LINUX PROGRAMMING

CO1: Ability to make effective use of Linux utilities and shell scripting language to solve problems.

CO2: Understand the Linux file system structure, operation on files and directories using system calls.

CO3: Mastery in the process and signal management using system programming.

CO4: Design various client server applications using tcp/udp protocols.

CO5: Familiarity with inter-process communication (ipc) using pipes, shared memory, semaphores, and messages

CO6: Interact with signal, its types, features, operations.

COMPUTER GRAPHICS

CO1: Understand the basic structure of modern computer graphics systems.

CO2: Understand the basic principles of implementing computer graphics primitives

CO3: Use 2-d homogeneous matrices for translation, rotation, and scaling transformations

CO4: understand various curves, surfaces and shapes.

CO5: Utilize key frame animation technique for production of animations.